
 ISSN 1354-3172

Overload

Journal of the ACCU C++ Special Interest Group

Issue 22

October 1997

 Overload – Issue 22 – October 1997

 Page 2

Contents
Contents 2
Editorial 3
Software Development in C++ 5
Allocation Stats By Kevlin Henney 5
An Introduction to the UML By Richard Blundell 8
The Draft International C++ Standard 12
extern "X" and namespaces by George Wendle 12
C++ Techniques 15
Make a date with C++ And so to const By Kevlin Henney 15
Premature Optimisation By Alan Griffiths 21
Whiteboard 24
Using Algorithms-Sorting by Francis Glassborow 24
Rational Values Implementation Part 1 by the Harpist 27
Some Opportunities to Increase STL Efficiency By Sergey Ignatchenko 30
editor << letters; 36
ACCU and the ’net 42
Credits 44
Copyrights and Trademarks 44
Copy deadline 44

 Overload – Issue 22 – October 1997

 Page 3

Editorial

C++

Not much has happened in ‘John’s world of
C++’ over the past couple of months.
Mostly because I’ve been in the midst of a
trans-Atlantic relocation. My wife and I have
moved house, job, and country - a slightly
stressful experience - and one which doesn’t
leave much time for software introspection.
Except that I feel like my life instance has
been deconstructed and reconstructed.

Class Life {} Merrills;

Unfortunately, I was instantiated at my new
company with an incorrect attribute. They
misspelled my surname. Not such a big deal,
you might think. But, there are a lot of
machines there are out there that know
exactly who I am, and what I’m up to. I’ve
been battling these evil boxes for two weeks
now, all the time only having half an
existence. Ever seen the Richard E. Grant
film ‘How to get ahead in advertising?’
Well, the transition has felt a bit like that.
Just as I get one entry repaired, I discover
my incorrect details have been replicated to
yet another database. It’s not just the sign on
my cubicle. It’s my electronic mailbox, my
real world mail box, my pay cheques, the
key-card system, even my phone thinks I’m
this other bloke. So finally, I think I’ve
fixed everything. But, having created the
real ‘Merrells’, I have to kill off this
‘Merrills’ doppleganger. A HR form is
involved! The employment of ‘Merrills’
must be terminated because of
incompetence, gross moral turpitude, or
death.

Better Living Through Directories

What’s the solution to all this replicated
redundant people information? Well, every
network should have a single store of
network users, and their attribute values.
The system administrator would only need to

maintain a single database, and each of the
evil network services and databases can then
be directed to the central store.

‘Directory Servers’ do indeed exist, but are
generally proprietary. NDS appears to be
what’s kept Novell alive for the past few
years, and now they’re pushing it onto other
network platforms. NT’s inability to scale up
to large networks is due to the lack of a
cohesive directory, but this should all be
solved by the Active-Directory in NT 5.0.

Shouldn’t there be a standard for this sort of
thing? Well, X.500 is the ISO Standard for
directory services, but it was designed by a
committee, is very complex, and hence very
expensive to implement. (Sound a little
familiar?)

LDAP

In steps a nifty Internet directory access
protocol standard. It defines how a client
can access simple directory services like add,
modify, search, and delete. Most system
software companies are LDAP enabling their
email client and server products at the
moment. For messaging systems the
directory simply provides another form of
address book. Since the directory has a DNS
address, and your machine is connected to
the net, you can use any public directory
server which supports LDAP. For instance
there’s a Internet white pages directory at
http://www.four11.com

My new found Zeal

My LDAP fever is no coincidence. I’ve
moved from Octel’s Unified Messenger,
based in London, to Netscape’s LDAP
Directory Server, based in Mountain View
California. Since they advise, ‘write about
what you know best’, I’ll be filling some of
these pages with my struggle to LDAP the
world.

 Overload – Issue 22 – October 1997

 Page 4

On to the more visceral experiences in life...

The Joy of Fry’s

Time to introduce you to the mecca of nerd-
dome. Picture this, the largest warehouse
you’ve ever been in, decked out as a Mayan
temple, filled with all goods required by the
modern technophile. Yes! Resistors, cable
ties, mother boards, processors, disks, PDAs,
laptops, colour scanners, radio scanners,
printers, books, CDs, DVDs, radar detectors,
laser pointers, pagers, washing machines,
walk-in fridges, and a TV for $9000. Oh
yeah, Fry’s started out as a supermarket, so
they sell food too... Beef Jerky and Jolt Cola!

John Merrells

merrells@netscape.com

Copy deadline

All articles intended for publication in
Overload 23 should be submitted to the
editor, by November 14th.

 Overload – Issue 22 – October 1997

 Page 5

Software Development in C++

Allocation Stats
By Kevlin Henney

Last issue [1], John looked at counting object
allocations as a way of detecting creation
and destruction inconsistencies for objects of
a particular class. This approach detects
leaks at the object rather than the memory
level, which is what overloading the new
and delete operators will give you. It is
also significantly simpler, more reliable, and
allows you to focus on objects of a specific
class than simple instrumenting of the global
allocation operators would allow.

John closed the article with some thoughts
you might like to ponder. Rather than pursue
these here, I've decided to follow up the
theme of basic stats collection he introduced
and revisit raw memory allocation. Given
that you can only control what you can
measure, collecting data on memory
allocation can lead to more than bug
squashing; it can also give you some idea of
the behaviour of your system in terms of its
resource use.

Defining the interface

A collection of statistics is an identifiable
concept we can capture as a class. The new
and delete operators will then manipulate
an instance to log the statistics, and a direct
call or indirect callback may be used to
retrieve and report them. This leads to the
following class definition:
class alloc_stats
{
public: // counter type

 typedef unsigned long count_type;

public: // construction

 alloc_stats();

public: // logging

 void log_allocation(
 size_t sizeof_alloc);
 void log_deallocation();

public: // reporting

 count_type allocated() const;
 count_type deallocated() const;

 bool balanced() const;
 count_type over_allocated() const;
 count_type over_deallocated() const;

 size_t min() const;
 size_t max() const;

 double mean() const;
 double variance() const;

private: // state

 count_type alloc_count;
 count_type dealloc_count;
 size_t min_size, max_size;
 double total, total_squares;
};

Note the separation of principle interfaces:
one is for logging, and the other is for
reporting. If I wanted a more generalised
design I would factor these out as interface
classes – abstract base classes containing
only pure virtual functions – and mix
them into alloc_stats. However, as
described here it is a simple concrete class
without any polymorphism.

I have only collected a few stats. Note that
all of the stats collected are low overhead as
they do not require long lists of remembered
info:

1. Allocation and deallocation count, which
will hopefully be the same;

2. Smallest and largest object allocated;

3. The total number of bytes allocated,
which will give the mean size for an
object, and the total of the squares of
object size, which can be used to
calculate variance and in turn the
standard deviation.

The numeric types used are worth a mention.
The type that expresses the size of an
allocated object is size_t, and so it is not
surprising to see it used for min_size and
max_size. In a long running system it is
likely that the accumulated totals would

 Overload – Issue 22 – October 1997

 Page 6

overflow an integer, and so a double has
been used for its range. The canonical
counter type is unsigned long. Or rather
used to be. For one reason or another on
many systems it may not be the widest the
integer type; some systems will have
unsigned long long. As the counter
type should be the widest type, and as this
may change, the design decision has been
captured as the count_type and the
interface written in terms of it.

Defining the implementation

The construction is a fairly straight forward
zero initialisation:
alloc_stats::alloc_stats()
 : alloc_count(0),
 dealloc_count(0),
 min_size(0),
 max_size(0),
 total(0),
 total_squares(0)
{
}

The logging functions are not too surprising.
However, threadsafe they are not. Some kind
of lock (e.g. mutex) is required to ensure that
log_allocation works safely. The same
lock could be used for
log_deallocation, although an
interlocked increment will perform the same
job if you have one available for the
count_type.
void alloc_stats::log_allocation
 (size_t sizeof_alloc)
{
 ++alloc_count;

 min_size =
 std::min(min_size, sizeof_alloc);
 max_size =
 std::max(max_size, sizeof_alloc);

 total += sizeof_alloc;
 total_squares += sizeof_alloc *
 sizeof_alloc;
}

void alloc_stats::log_deallocation()
{
 ++dealloc_count;
}

The reporting functions are simple queries,
and are potential candidates for inlining. If
you don't have a stats book to hand, the most

useful feature of the code below is the
calculation for variance.
alloc_stats::count_type
alloc_stats::allocated() const
{
 return alloc_count;
}

alloc_stats::count_type
alloc_stats::deallocated() const
{
 return dealloc_count;
}

bool alloc_stats::balanced() const
{
 return alloc_count == dealloc_count;
}

alloc_stats::count_type
alloc_stats::over_allocated() const
{
 return alloc_count > dealloc_count
 ? alloc_count - dealloc_count
 : 0;
}

alloc_stats::count_type
alloc_stats::over_deallocated() const
{
 return dealloc_count > alloc_count
 ? dealloc_count - alloc_count
 : 0;
}

size_t alloc_stats::min() const
{
 return min_size;
}

size_t alloc_stats::max() const
{
 return max_size;
}

double alloc_stats::mean() const
{
 return total / alloc_count;
}

double alloc_stats::variance() const
{
 return
 (total_squares / alloc_count)
 - (mean() * mean());
}

Replacing new and delete

We need an object to collect stats about our
object allocation. You can leave the
following as a global, make it a file scope
static or place it in an anonymous
namespace, according to taste and intent:
alloc_stats objects;

As the aim is to instrument rather than
redefine the basic behaviour of allocation,
you should follow the convention of the

 Overload – Issue 22 – October 1997

 Page 7

existing operators [2], taking into account the
latest spec for these operators [3]:
void *operator new(size_t size)
{
 // cannot allocate null
 // pointer for size == 0
 //
 void *ptr = malloc(std::max(size, 1));

 while(!ptr)
 {
 // get current new handler
 void (*handler)() =
 set_new_handler(0);
 set_new_handler(handler);

 if(handler)
 {
 handler();
 }
 else
 {
 // sadness and woe :-(
 throw bad_alloc();
 }
 }

 // only log allocations
 // when successful
 objects.log_allocation(size);

 return ptr;
}

void operator delete(void *ptr)
{
 // do not count delete on
 // a null as a deallocation
 if(ptr)
 {
 objects.log_deallocation();
 free(ptr);
 }
}

Reporting back

Collected stats are of no use unless they are
reported. As we have expressed our design
with a class, it seems natural to use
operator<< for output. For brevity I have
kept this output simple, but you could report
on the standard deviation by taking the
square root of the variance, or you could add
an explicit field for reporting the difference
between the number of allocations and
deallocations 1:
ostream &operator<<(ostream &out, const
alloc_stats &src)
{
 out << "objects allocated: "
 << src.allocated() << endl

1 Note that this is not necessarily the same as the number of leaks,
as there may be memory trampling errors, i.e. a single object deal-
located twice and two objects forgotten is not a leak of one object.

 << "objects deallocated: "
 << src.deallocated() << endl
 << "smallest object: "
 << src.min() << endl
 << "largest object: "
 << src.max() << endl
 << "mean object size: "
 << src.mean() << endl;
 return out;
}

When to report these? You could report them
at the end of main, or at some point after. I
won't get drawn into how to try and make
sure that all of the destructors for static
storage objects have been called, but I will
say that if you really do want it last thing (or
as near as possible), try to avoid using I/O
stream objects as they will probably have
been destroyed. As a design note, it is
generally inadvisable to have too many static
storage objects with sophisticated allocation
behaviour.

For exposition I have kept it fairly simple:
void report_objects()
{
 cerr << objects;
}

int main()
{
 atexit(report_objects);
 ...
}

Closing thoughts

The mechanism shown collects stats for all
object allocations, so...

• What other statistics do you feel might
be useful to collect? How difficult would
it be to add these?

• How would you extend the code to also
cover array allocation?

• How could you recast the code to handle
stats collection on a per class basis? The
solution should be relatively non-
intrusive, i.e. only a minor modification
to the definition of the class of interest
need be modified to add the facility. The
solution to this will give you an answer
to one of John's questions: factor the
feature out as a mix-in class [Hint: it

 Overload – Issue 22 – October 1997

 Page 8

should be an empty class, and templates
play a part in the action].

• Given that you have per-class stats
collection, how would you reuse the
same code to implement a global stats
collector again?

References

1. John Merrells, "Object Counting",
Overload 21.

2. Scott Meyers, Effective C++, 1992,
Addison-Wesley.

3. Working Paper for Draft Proposed
International Standard for Information
Systems – Programming Language C++,
http://www.maths.warwick.ac
.uk/c++/pub.

Kevlin Henney
kevlin@acm.org

An Introduction to the UML
By Richard Blundell

Until relatively recently, the Unified
Modelling Language (UML), the Object
Modelling Technique (OMT), Object-
Oriented Software Engineering (OOSE),
Booch, etc., were terms I heard bandied
around a lot, but I only had a vague idea
what they actually involved. I was familiar
with less formal methods of describing
software systems. If I needed to describe a
class, a class hierarchy or a collection of
interacting classes to a third party, I could
improvise a diagram containing various
boxes and lines, and then (if I got confused
looks all round!) explain to what the
particular elements in my diagram referred.
I was interested in finding out about more
formal or standardised ways of conveying
this information. Such methods would also
be useful for documenting the architecture of
a software system (which is, of course, the
same thing as describing it to someone else,
only you don’t know to whom you are
describing it in advance…) I did not,

however, have access to much information
about these formal methods, and I got the
opinion that unless I worked on a large
project for a large company that had a
heavyweight development policy, I would
not be able to learn or use such methods.

Deep down, however, I felt that such
standard methods were no different in
principal from my informal sketches. In
other words, there was nothing intrinsically
difficult about such methods, even though
such diagrams were often confusing at first
sight. After investigating the UML, I now
know that my preconceptions were
substantially correct.

I have always believed that with
programming languages, once you have
learnt one, and have gained a certain amount
of experience using it, then switching to any
of the other mainstream languages is largely
a matter of learning the syntax of the new
language, and then spending a variable
amount of time learning its unique idioms
and pitfalls. This latter stage can take a large
of time, but I believed that a competent
programmer could be productive soon after
learning the new syntax. (Some language
shifts are harder than others, e.g. non-OO to
OO, but in some ways the new programming
paradigm or model primarily involves a new
set of idioms, albeit a big one.) It is the
same with modelling languages. If you
already know one, switching to the UML
should be fairly easy (in fact, this was one of
the design criteria). As long as you know the
architecture of what you are trying to
describe, and understand how the classes and
objects within it interact, it should be
moderately easy to start using a modelling
language by learning the basic syntax.

Intentions

I hope that what follows will help to describe
and explain the notation used in the UML,
some of the benefits of using it, and allow
you to document systems and communicate
your ideas. In this article I shall cover, as
background, a brief history of the UML. I

 Overload – Issue 22 – October 1997

 Page 9

shall then describe the modelling elements
required for simple static class diagrams,
because I feel that these will be most useful
to those not currently employing a modelling
language, as well as to those programming
more as a hobby. These diagrams allow
single classes, class hierarchies and related
classes to be described, and are a good
introduction to the UML before burrowing
deeper. I will naturally leave a number of
things uncovered, but I hope to describe
these and most of the remaining capabilities
of the UML in subsequent articles. On
occasion I shall highlight differences
between UML notation and OMT/Booch.

In what follows, I shall assume familiarity
with the concepts of classes, member
variables (attributes), methods (operations)
and inheritance, and basic C++ syntax (The
reviewer of this article wanted to stress that
UML is programming language independent.
My discussions will be mainly for this C++
audience, however).

History of the UML

Modelling languages have been around for a
long while, and when object-oriented
development methodologies were first
introduced twenty-odd years ago existing
modelling techniques were modified to
support this programming paradigm. Many
different languages were invented, but by the
early 1990s, a few leading techniques were
in mainstream use. These included OMT,
Booch and others, and they helped their
practitioners communicate ideas and specify
and document their systems. The diversity
of techniques produced a desire to create a
unified language with which all reasonable
systems could be described without
ambiguity. In 1994, Grady Booch and Jim
Rumbaugh (OMT) got together to create the
Unified Method, combining the best aspects
of their two methods. In 1995, Ivar Jacobson
joined the team and merged his OOSE
method with the Unified Method to create
the first specification of the UML.

After much public feedback, version 1.0 of
the UML was published in January 1997. As
a result of subsequent feedback and
experience from the public and UML
partners, version 1.1 of the specification is
due for release in September 1997.

Very little of the specification is new and
unique to the UML. The UML largely
represents the bringing together of the best
elements from all the current modelling
languages, thereby building on the individual
strengths of what went before. Some new
elements have been added, however,
including support for threads, concurrency
and distribution, components, and direct
support for patterns.

The UML has been designed to be able to
describe all phases of the software
development process (as well as non-
software oriented processes - the UML
definition is itself presented in UML
notation!). The UML is a specification of a
meta-model - a language that can describe
models in general, and the most visible
aspect of the UML is in the numerous types
of diagrams that its notation supports. It has
also been designed to be extensible, and can
therefore be used to describe most systems
that were not envisaged or encompassed by
the base definition.

The static class diagrams that I describe
below are just one of the types of diagram
defined. Other types of diagram allow
descriptions of classes and objects,
interactions between them, their allowed
state transitions and lifetimes, class and file
dependencies, right through to packaging
details and implementation details.

UML has support for Use-Case modelling,
which aids requirements analysis, both static
and dynamic modelling of classes and
objects, Component modelling, which helps
to organise classes and functionality into pre-
and post-compilation files to aid re-use, and
Deployment modelling to specify how your
system is partitioned and distributed across a
network.

 Overload – Issue 22 – October 1997

 Page 10

Class Diagrams in the UML

OK, let’s get stuck in. A class can most
simply be shown as a rectangle with the
name of the class in it. This is similar to the
OMT class notation (as are most of the
diagrams in what follows), but quite
different from Booch, which shows the class
name in a sort of splat shape with a dashed
outline. A UML example hedgehog class is
shown in figure 1. (I apologise if the lines in
the figures come out rather faint.)

hedgehog

Fig. 1 - The hedgehog class with details sup-

pressed.

One feature of the UML is its
acknowledgement of design tools, and so the
ability to show different views of a particular
system is supported. Certain features can be
suppressed or displayed at will, depending
upon the level of detail required. The
example in figure 1 shows a class with all
external interfaces suppressed, leaving just
the class name.

A less-suppressed model of the same class is
shown in figure 2. Here we see that a class
is shown as a box divided into three
compartments. The top name compartment
holds the class name, the middle list
compartment holds the class attributes, and
the lower list compartment holds class
operations.

hedgehog
curledUp : bool = false
velocity : vector
slugsInStomach : int

isCurledUp () : bool
eat (numSlugs : int = 1)
accelerate (acceleration : vector) : vector

Fig. 2 - More detail of the class.

Class Attributes

The general format for an attribute is:

 [vis] name : type [= init]

where vis is an optional visibility symbol,
name is the attribute name, type is its type,
and init is an optional initial value.
Visibility symbols defined in the UML
include +, # and - for public, protected and
private respectively. In addition, the “+$”
visibility denotes a public class (i.e. static)
method. However, many UML tools, such
as the one I used to create the figures, choose
to use icons for these attributes instead (a
freedom endorsed by the UML), and so you
often don’t see these symbols in use. An
extra visibility is supported - that of
implementation, which means that the item
is visible only within the current package. I
shall defer the definition of a package until
later. An ellipsis at the end of the attributes
list indicates that further attributes exist but
are not shown.

Class Operations

The format for an operation is:

 [vis] name (parms) [: type]

Here, vis is the optional visibility as before,
name is the operation name, and type is an
optional return type, assumed to be void if
absent. parms is a comma-separated list of
parameters to the function, each one taking
the form:

 name : type [= default]

where default is the default value for the
parameter if it is not specified.

Class Associations

Associations between classes are indicated
using a solid line joining the two class
symbols. An example of an association is
shown in figure 3. Association lines can be
labelled in a number of ways to describe the
meaning of the association. Role names can
be added at each end of the line to describe
each class’ participation in the association
(figure 4).

 Overload – Issue 22 – October 1997

 Page 11

slughedgehog

Fig. 3 - A binary association.

eaten
slug

eater
hedgehog

Fig. 4 - Association roles.

The multiplicity of each end of an
association can be added as well, to indicate
how many classes are involved in the
association (this differs from OMT and
Boock - see figure 5). Common formats for
multiplicity include “n”, where n is a
number, or “n..m”, indicating a range of
values between n and m. An asterisk is used
to indicate a potentially unlimited number,
and a single asterisk is a shorthand for
“0..*”, meaning any non-negative number.

eaten

0..*
slug

eater

1
hedgehog

0..*1

Fig. 5 - Roles and multiplicity.

Aggregation

If one class forms some form of aggregation
of other classes - a box holding a number of
paper clips for example - then this can be
shown using the aggregation symbol, a
hollow diamond, on the aggregate end of the
association, as in figure 6. An aggregation
often denotes that the aggregate holds
references to all of the things that it is
aggregating, but is otherwise independent of
them. It therefore indicates no ownership.

0..*
paperClip

0..1
box

0..*0..1

Fig. 6 - An aggregation association showing
the multiplicity of the aggregation.

Composition

A stronger form of aggregation is
composition. In composition, the lifetime of
the aggregater and the aggregatee are similar

(although the aggregate can be built
dynamically, or elements can be removed
before the aggregate is destroyed) so that
when the composite is destroyed, the
constituent parts are destroyed with it. It
therefore indicates some form of ownership.
Figure 7 shows an example of a composite,
the composite association being indicated by
a filled aggregation diamond. Composition
can be shown in a number of ways, two of
which are shown. The other two that I know
of involve showing the aggregated class
symbols within a larger class symbol for the
aggregate, but I don’t know how to get my
modelling tool to produce those forms! A
class is a composite if it contains the
aggregated classes by value, although I do
not believe that this need be the case.

1 1..* prickle

1

hedgehog
1 1..*

4 leg1 4

hedgehog
prickles[n] : prickle
legs[4] : leg

Fig. 7 - Two ways of showing composition.

Generalisation and Inheritance

Class inheritance is shown using a
generalisation arrow leading from the more
derived class to the more general one, as
shown in figure 8 (OMT users will notice
that the generalisation symbol is not quite
the same in UML). Multiple inheritance is
shown using more than one generalisation
leading from the derived class to its parent
classes.

animal

hedgehog slug

Fig. 8 - Generalisation.

 Overload – Issue 22 – October 1997

As a final example, a slightly more
substantial diagram is shown below in figure
9, which combines many of the ideas
covered so far. This example also illustrates
notes, the rectangle with the folded top
corner, used to annotate a diagram. It also
illustrates two alternative ways of showing
generalisation, with either combined or
separate arrow heads. If what I have been
describing above made any sense, the figure
should stand without any further
explanation!

 Page 12

Conclusion

There is a lot more to the UML than I have
covered here - many more concepts, many
more diagram types, and many more
refinements to the concepts I have illustrated
above. What I have covered this time,

however, should be sufficient to allow you to
start using the UML to share information
about systems you are developing in a
standard fashion that is rapidly growing in
popularity. Next time I hope to cover
collaboration diagrams for documenting
design patterns, amongst other things. As
usual, feedback is welcome.

References

Rational web site is at www.rational.com,
which contains a lot of UML information.

Richard Blundell

rpb@mail.ndirect.co.uk

tableWindow

barElement lineElement wedgeElement

parent

1child
0..*

childWindow
1

application
1

applicationWindow
1

0..*

1

1

0..* 1
dataArray

1 1..*
chartElement

0..* 1

1
chartWindow

1

chart
1 1..*

1

1

this is defined in
another diagram

Fig. 9 - An extended example, showing a breakdown of a charting application.

The Draft International C++ Standard

extern "X" and namespaces
by George Wendle

One of the features that highlights the feeling
that C++ is settling to an agreed standard is
the way that many of the compilers are
converging. Most compilers either already
support such things as namespaces, or plan
to do so with their next release. The worst

case scenario is that SC22 decides that the
actual document presented as a Committee
Draft has had too many changes made to it in
order to a reach consensus of the
participating National Bodies (like the UK's
BSI or what was ANSI in the USA and I
now understand is NITS) to allow it forward
as a Draft International Standard. Even in
this case I believe that there is now a general
feeling that we all agree on about what
constitutes 'standard' C++.

 Overload – Issue 22 – October 1997

 Page 13

The spectre that I see hanging over us is that
some major compiler implementors may feel
that they are bigger than the standard and
abrogate privileges to themselves that even
X3J16/WG21 has refused to themselves.
X3J16/WG21 has placed all of the Standard
C++ Library into a namespace with the
solitary exception of those items inherited
from the Standard C Library. Even in the
latter case it has chosen wording to strongly
encourage implementors to wrap that part in
namespace std as well.

Superficially it would seem that companies
such as Borland and Microsoft should
instantly wrap their proprietary libraries
(OWL, MFC etc.) in suitable namespaces.
Their failure to do so already ensures that
name clashes are well nigh inevitable. Why
haven't they? I can only guess. I suspect
that there maybe a backward compatibility
problem with DLLs and link-names. I do
not know enough about the technology to do
more than speculate. However this is a
matter that needs urgent attention. Pure,
single language environments such as Java-
JVM can solve linkage problems because the
combination has complete control of the
execution environment. Any problems
between JVM and the underlying platform
are fixed up by some mechanism that is
completely invisible to the user (well not
quite, because you often have to set up
critical features such as home directories
before you enter JVM.) However what we
want is that the components, be they
ActiveX, JavaBeans, VB controls or
whatever, have interfaces that completely
hide the implementation details. I should not
care what language a DLL has been written
in. Perhaps this is several steps further than
the tool providers are ready to go.

We must distinguish between pure C++
resources and those provided by some
external mechanism. Items such as
OWL/MFC are described as C++ libraries.
These should be provided in the correct C++
form; that is they should be encapsulated in a
vendor specific namespace. Any

mechanisms needed by other languages
(Visual Basic, Delphi etc.) are problems for
those languages and should be fixed by
them. I can think of many ways of doing
such things but I leave it to those with
expertise in component interfacing to
address those and perhaps explain to the rest
of us what such things as SOM, COM etc. do
to help/hinder.

C++ already provides the mechanism for
interfacing (linking) to external
'components'. The problem is that so many
view the mechanism in a limited historical
perspective. Most C++ programmers know
that they sometimes have to declare a
function as being extern "C" so that its
linkage name will be compatible with a third
party C library (comms., network, graphics
etc.). What most do not realise is that there
is much more to that facility. Basically
when I declare a function to be extern
"X" I am specifying something about the
function interface. Note that I am not saying
anything about the implementation. Let me
clear that up before I go on.
extern "C"
{
 void fn(mytype const * i)
 {
 cout << *i;
 }
}

Is perfectly alright. The use of C++ in the
body of the function is perfectly acceptable.
The extern "C" simply provides
information about how the function may be
called. The first and most obvious feature is
that it requires that the internal source code
name 'fn' be provided externally in
whatever form this implementation uses to
link to C code (usually without name-
mangling but it might be otherwise if the
linkage was to object code produced by a C
compiler that used some form of name-
mangling to support type-safe linkage (for
example the old JPI TopSpeed C compiler).
The consequence of this is that C code can
probably call that function though this is not
something that C++ can legislate for.

 Overload – Issue 22 – October 1997

 Page 14

There is a second subtler requirement that
caused considerable thought among those
developing C++; how are arguments to be
passed? Without going into detail, there are
several ways that arguments can be passed
from the point of call to the point of
execution of a function. For example if a
function takes two arguments and they are
going to be passed on a machine stack,
which order should they be placed in? C and
Pascal have opposite default arrangements.
C++ basically says that the order is generally
of no concern to the programmer. That last
statement is generally true until you are
linking to external code that has not been
provided by the same compiler.

Now there is nothing to prevent Microsoft
from implementing extern "Visual
Basic", or Borland from implementing
extern "Microsoft C++". The former
would enable the simplest possible reuse of a
VB function from C++ code while the latter
could be used to ensure that the linkage
details of a function call were compatible
with object code compiled with a Visual
C++ compiler.

What I am trying to get at is that C++
already has mechanisms built in to it to allow
management of mixed programming from
the C++ side. It even has a mechanism that
provides some support for exporting its
functions for use by modules written in other
languages. Of course using extern "X"
can result in problems when porting code but
at least these problems will be clearly
identified. Fixing it may not be in the
programmer's domain, though sometimes it
will be. For example porting source
developed with Borland C++ to Visual C++
might simply mean that you had to suppress
the extern "Microsoft C++"
declarations.

As a programmer I am powerless unless my
compiler provider includes supportive
extern "language spec" to help me.
This is a quality of implementation issue.
Start asking for it. Initially the response will

be that no one wants it. If you give up it will
be a self fulfilling claim. Perhaps we need to
find a young, hungry tool developer who will
understand that making their tools work with
other people's object code will provide
essential extra value. I am not going to
embarrass anyone by naming names but I
can think of a couple of products with lots of
potential and a small corner of the market
who could benefit from such an approach. If
I can simply drop in a new set of
development tools without having to get new
versions (if even possible) of all the libraries
(Zinc, XVT, etc.) I am using I am much
more likely to make the move. I will still
have work to do on my own code but at least
I will have the tools and support I need to do
it.

Now let me turn to internal conflicts. I need
those vendor provided libraries tucked into
their own namespaces. I need to control
what a name means. As C++ programmers
mature they will stop writing:
#include <iostream>
using namespace std;

and replace it with something like:
#include <my_io_idents.h>

Inspection of my_io_idents.h will
reveal #include <iostream> followed
by a number of specific using declarations
that only inject into global namespace
those identifiers that I regularly use. Any
others that I want can either be declared
specifically or used via their elaborated
name. This has two consequences; I can
control the names in global namespace and I
can document where less common names are
coming from. For example suppose that two
third party libraries both contain a class
complex. I cannot use either of those
libraries in code that contains using
namespace std; unless the library has
been encapsulated in a namespace.
However if the library writers have had the
courtesy to use the namespace facility then
I can mix and match. Even if I elect to write
using std::complex I can still use the

 Overload – Issue 22 – October 1997

 Page 15

others by specifically qualifying complex
with the relevant namespace at the point
of use. Even if I lazily write something like:
using namespace std;
using namespace vendor_abc;
using namespace vendor_xyz;

I can still manage the problem of writing:
// results in an ambiguity error
complex x;

by writing
std::complex x;

Those that do not want to be bothered with
what they consider to be unnecessary

complications generated by namespaces
can fix the problem with a using
namespace directive. Those of us who are
ready to move on will be able to do so. I
want the freedom to choose. Don't you want
the same? So which compiler implementor
is willing to do the work so that I can use
MFC encapsulated in a namespace?

All that is need for bad coding practices to
proliferate is the silent acquiescence of
good programmers.

George Wendle

C++ Techniques

Make a date with C++
And so to const

By Kevlin Henney

Summarising the previous article (Overload
21), C++ allows you to declare variables just
about anywhere, and with a great deal of
freedom in how you initialise them. There
comes a point in every series of articles
where const must be discussed and
introduced, and this article will be the first
place I do this. In theory there is not much to
say, but in practice there is: standard C has
const, which it in fact borrowed from C++,
but there are still many programmers who do
not use or understand it. As there are subtle
differences between C and C++ in this area I
will introduce const from scratch.

The essential motivation for const was
stated somewhat ahead of its time (and I
confess more than a little out of context) in
the seventeenth century by Lucius Cary,
Viscount Falkland:

When it is not necessary to change, it is
necessary not to change.

Banishing magic

Magic numbers are the bane of any program.
You are reading through some source code
and you come across a calculation or limit
check that involves one or more literals, and
not a comment in sight. So what exactly does
509 mean in this context? Why did the
programmer choose 17 as opposed to, say,
16? 42 may be the answer to some things,
but on its own in a piece of source code it
tends to beg questions.

The good programming solution is to name
the concept being represented. This applies
right across the board: if you identify and
understand a concept, name it and describe
it. The name may be a sufficient description,
but so long as there is something that plays
the role of description you are creating a
useful abstraction. This technique applies to
types, functions and values. As well as
providing a richer description, a named
concept provides a single point of change in
the event that the details of that concept are
changed, e.g. in the case of a default file
name.

 Overload – Issue 22 – October 1997

 Page 16

What we want here is a named constant. The
classic C approach (K&R as opposed to ISO)
is to use the preprocessor:
#define DEFAULT_DIARY_NAME "diary.dat"

I have no love of the preprocessor. As a tool
it is neither good nor bad, but in its
application it often causes more problems
than it solves. It is one of the greatest
handicaps that C programmers take with
them when they learn C++. In this respect
teaching C++ to non-C programmers is
easier as their understanding of
programming concepts has not been
damaged by use of the preprocessor.

The better solution, available in both C and
C++ for this example, is to use const:
const char
default_diary_name[] = "diary.dat";

The advantage of const is that it is
properly within the core language: it declares
a named variable that is addressable, is
visible in the debugger, and obeys the scope
rules of the language in exactly the same
way that a macro doesn't. Notice also that we
no longer have any need to shout: upper case
naming is a convention intended to prevent
macros – which work by textual substitution
without regard for scope and context – from
trampling over other identifiers in your code.
Many C++ programmers are still stuck to
their C ways in equating macro naming with
constant naming 2. It may be a hard habit to
break – and perhaps not even one you've
ever questioned – but it is certainly more
consistent, and ultimately worthwhile.

The effect of const is to allow queries but
prevent assignment:

2 It is worth noting that the idioms for Java
missed this difference and enshrined the up-
per case naming convention for constants.
However, that is the idiom to be followed in
Java. For C and C++ macros should use up-
per case and all other identifiers should con-
form to a consistent local convention.

cout
 << "filename: "
 << default_diary_name << endl; // OK

// illegal: compilation error
default_diary_name[6] = 'f';

diff C C++

An interesting, but minor, difference
between C and C++ is shown by the
following fragment:
// legal C, illegal C++
const date unassignable;

That's right, C allows you to declare a
const variable 3 – which is unassignable by
definition – without initialising it! I'm not
sure what was intended by leaving this hole
in the language. No matter, C++ fixes it by
doing the right thing.

In C all const variables are runtime
constants, i.e. their values exist only at
runtime and are not available to the
compiler. The fact that one can have runtime
constants in C and C++ is one of the
strengths over languages like standard
Pascal, where constants may only be simple
compile time values (not even expressions).
This allows the programmer to factor out
important calculation based constants that
cannot be determined until runtime:
date today();
int year_difference
 (date first, date second);

date dob;
cin >> dob.day >> dob.month >> dob.year;
const int age =
 year_difference(today(), dob);

// age may be used as a constant
// but may not be modified

However, there are a number of cases where
a compile time constant is required. As the

3 Yes, "const variable" is a strange term,
but nonetheless a valid one in the context of
programming. A programming constant is
not the same as a true universal constant.
That said, some theories suggest that not all
universal constants are.

 Overload – Issue 22 – October 1997

 Page 17

term suggests, a compile time constant is one
that is known to the compiler and can
therefore be substituted directly at compile
time. In both languages there are places
where a compile time constant is required:

• The size of arrays;

• The case label of a switch statement;

• The width of bit fields.

C also additionally requires compile time
constants for aggregate initialisers and non-
auto initialisers (this constraint was
removed in C++, as described in the
previous article). Note that all of these
require integer types, so there is effectively
no need for compile time constants of other
types. In C you would not be able to use
const to name compile time constants,
probably leading to macro use:
#define MAX_DAYS_IN_YEAR 366

Or, more elegantly, an anonymous enum
constant:
enum { max_days_in_year = 366 };

In C++ a const variable that has a compile
time constant initialiser which is visible at
the point of use is itself a compile time
constant. This applies to both global and
local const variables:
const int max_days_in_year = 366;

The compiler will substitute 366 wherever
max_days_in_year is used, and will
typically optimise away the storage for the
variable – this won't happen if its address is
used, and is unlikely to happen if you
compile your code with debug options.

diff C C++ | more

There are some subtle differences between
the linkage of a const at file scope in C and
in C++: in C a global const has external
linkage, i.e. const does not modify its
linkage, whereas in C++ it has internal
linkage, i.e. applying const has the silent

effect of also applying static. This is a bit
of a wart in the language, but I understand
the motivation. The rationale is that
programmers would (and should) use
const where they might otherwise have
used macros. As constants are normally
bundled in header files, there might be a
problem for some programmers if const
had external linkage, i.e. they would
probably be tempted to write:
// date.hpp
const int secs_per_day = 24 * 60 * 60;

// firstuse.cpp
#include "date.hpp"

// seconduse.cpp
#include "date.hpp"

This would cause multiple definition
problems at link time. So the language bent
towards the habit of the programmer, rather
than the other way around which can be
expressed as follows:
// date.hpp
static const int
secs_per_day = 24 * 60 * 60;

As a note, if you are writing header files that
will be common to both C and C++ this is
something you should note. If you want
constants with external linkage, which will
probably be most of them, you need to use
extern in the definition:
// date.hpp
extern const date epoch;

// date.cpp
extern const date epoch = { 1, 1, 1970};

const and Pointers

Perhaps the greatest initial source of
confusion with const relates to its effect on
pointers. A pointer adds a level of
indirection, and so there are two const
aspects to consider: the pointer variable
itself, and the object that the pointer
references. Each of these aspects may be
qualified const, but given syntax of pointer
declarations the question is "how?".
const char *
default_diary_name = "diary.dat";

 Overload – Issue 22 – October 1997

 Page 18

This is probably not all of what the
programmer intended: it declares a pointer to
const char, and not a const pointer. In
other words, default_diary_name is
assignable, even though its dereferenced
contents are not:
// OK
default_diary_name = "/dev/null";

// illegal: compilation error
default_diary_name[6] = 'f';

To declare a const pointer, the const
must be associated with the pointer variable
name:
char *const
default_diary_name = "diary.dat";

// illegal: compilation error
default_diary_name = "/dev/null";

// OK
default_diary_name[6] = 'f';

Combining the two gives us what we
intended:
const char *const
default_diary_name = "diary.dat";

// illegal: compilation error
default_diary_name = "/dev/null";

// illegal: compilation error
default_diary_name[6] = 'f';

How do we rationalise this? It is possible to
dive into the syntax description of a
declaration and rationalise it from the
grammar upwards. However, there is a
simpler approach for the most typical
declarations 4:

4 It is important to emphasise "most typical".
As you may know, the language syntax al-
lows far more complex declarations which
you have to peel apart like an onion – and
like onions, some complex declarations have
been known to reduce grown programmers
to tears (e.g. signal). However, if you are
comfortable enough doing that, you probably

• What is pointed to lies to the left of the
*, therefore const char *p declares
a pointer to const char, which we
know from before to be unassignable;

• What is doing the pointing, i.e. the
pointer variable, is described to the right
of the *, therefore char *const p
declares a variable named p to be
const.

You can arrive at the same conclusion by
reading the declaration backwards: const
char *const p declares p as a const
pointer to const char. Note that the
specifier ordering used here is the most
common convention; an equivalent, but less
common, declaration would be char
const *const p.

With all that in mind, you should be able to
make sense of the following:
const char *const day_name[] =
{
 "Sunday",
 "Monday",
 "Tuesday",
 "Wednesday",
 "Thursday",
 "Friday",
 "Saturday"
};

This is the const correct way of defining
an unchangeable lookup table of immutable
strings; many programmers tend to forget the
second const.

Access rights

What role can pointers to const play? Do
they, as the terminology suggests, point to
const objects? Well, no, not exactly. This
is one of those quirks of naming and history
that you just have to live with. Bjarne
Stroustrup's [The Design and Evolution of
C++, Addison-Wesley, ISBN 0-201-54330-3]
original idea was to have the qualifier named
readonly by analogy with concepts found

don't need too many extra rules of thumb
when it comes to const.

 Overload – Issue 22 – October 1997

 Page 19

in operating systems, but followed advice to
change it to const. This is a shame, as
readonly would have better captured the
intent.

Thinking in terms of readonly it is easier to
see that a pointer to const does not
necessarily point to a const object. Instead
it guarantees that the pointer may only be
used for read access, i.e. if it is a non-const
object it may be modified by another route,
but via a const pointer you may only
observe changes not cause them. However,
as a const object guarantees from the
outset that it will not be modified, the
compiler will reject any attempt to increase
the permissions 5. Therefore assigning a
pointer to non-const the address of a
const object is a compile time error. The
following code fragment uses the
day_name array defined previously:
// illegal: compilation error
char *illegal = day_name[0];

All this makes const a valuable
specification tool. The type system offers a
means to specify a system quite precisely.
The types that you select, and the legal
operations that you can perform on them,
constrain the multitude of possible program
behaviours to a subset of meaningful ones.
With const you can now more completely
specify the legal operations on your data. A
function taking pointer arguments can easily
show which objects are to be used for
information only, i.e. const implies that
they will remain unchanged, and which are
to be operated on:

5 I am assuming that you understand a cast
will invalidate any such assumptions. I am
unconcerned by this: it has always been un-
derstood that in the presence of casts most
bets are off, including the rest of the type
system's guarantees. Given that with a cast I
can turn water into wine, it should be un-
derstood that all of the guarantees I give are
for those co-operating with the type system –
if you work against it, you are on your own.

struct diary;
void print(const diary *);
void update(
 diary *,
 date when,
 const char *description);

It is easy to understand the intent of these
functions simply by inspecting the names
and the const qualification (or absence of).
To this end the const qualifier serves a
definite purpose to the human reader, with
the added bonus that it will be compiler
enforceable. Before thinking about
commenting your code, say as much as
possible using the type system; the behaviour
and assumptions left over are what you put
in your comments.

I do not understand, or accept, programmers
who say they like strong typing and then
ignore const when it is offered and
explained to them. It leaves the impression
that they do not fully understand the
relationship between the high level view they
have of a system, i.e. its specification, and
how best to represent it in code. In short,
programming. Raising the semantic level of
your programming by attaching meaningful
behaviour to clumps of data is a fundamental
theme I will return to in future.

Summary

• const is highly expressive and safe.
The combination of inline functions
and const makes many programming
uses of the preprocessor redundant.

• There are subtle differences between C
and C++'s interpretation of const: on
the whole these are extensions, i.e. do not
affect existing assumptions, but the
difference in linkage of a file scope
const is something to watch out for.

• It may be easier to translate const as
"readonly", because const qualified
values are not strict constants in the
mathematical sense, and pointers to
const may be point to non-const
objects.

 Overload – Issue 22 – October 1997

 Page 20

• const is a simple but powerful
specification tool.

Kevlin Henney
kevlin@two-sdg.demon.co.uk

 Overload – Issue 22 – October 1997

 Page 21

Premature Optimisation
By Alan Griffiths

Inlining

In Overload 21 Francis complained of
programmers rejecting inlining, he then
“justifies” the inlining of forwarding
functions on the grounds that it has no space
overhead.

As far as this goes this seems reasonable,
however there are some significant hidden
costs. For the sake of exposition let us
assume that we inline all the “trivial”
forwarding (and accessor functions?) in the
class header files - separate “inline” headers
don’t affect the argument.

1. Firstly, the compiler needs to process and
hold details of all these “free” inline
functions for every class included in a
compilation.

2. Secondly, if any of these functions ever
changes then every file that depends on
the header needs recompilation.

Both of these facts can seriously impact the
build time of any serious software
development by (1) increasing the resources
required by a compilation and by (2)
increasing the number of compilations. To
give an example from “real life” I have seen
this turn a one minute edit into a six hour
rebuild!

Priorities

Looking at software development in more
general terms we are always balancing cost
of development (time, staff and tools), ease
of maintenance, and runtime resources
(space or time).

The correct balance varies from project to
project, but I am sure that the project I’m
currently working on is quite typical. In this,
there are a few subsystems that are
performance critical, but the vast majority of

code must be delivered with an efficient use
of development resources. (The usual
comments about 80-20/90-10 rules are left as
an exercise for the reader.)

Most code is not going to have a significant
impact on the use of runtime resources and
should be written to minimise the costs of
development and maintenance. Simple,
easily tested algorithms should be used, and
various forms of code level “optimisation”
(of which inlining is an example) should be
postponed.

When to optimise

This approach leads to a functionally
complete system (or subsystem) fairly early
in the development life-cycle, but one that
will fail in some cases to meet time or space
constraints.

This is the time for measurement - it is
amazing the unlikely places that the
computer finds to spend its time or guzzle
memory. For instance, last year I examined
a test case that pulled large numbers of
objects from a database system and
presented them on screen. It was spending
30% of its runtime inside the string equality
operator!

It was a matter of minutes to rewrite this
function and only a couple of hours
recompilation before I could confirm that I’d
achieved a 27% speed improvement. (I
HATE THE TEMPLATE INCLUSION
MODEL! - Sorry, the speedup was worth the
time spent, but with separate compilation I
could have made the change in minutes.)

It is only when you can measure the use of
memory or time within the application that it
is possible to effectively control it.
Otherwise how do you know what effect you
expect from a change, or whether you have
achieved it? (It helps justify the tools needed
to achieve this that managers are also taught
that “You cannot manage what you cannot
measure.”)

 Overload – Issue 22 – October 1997

 Page 22

An additional benefit of only optimising
when there is a functionally complete system
is that the test harnesses and/or test scenarios
should by then be debugged and stable. This
allows changes to be validated quickly.

In practice, I’ve rarely found that the way an
algorithm is coded has a big impact on the
runtime, but I’ve frequently found that the
choice of algorithm does have a big impact.

For example when there is enough RAM to
hold “key/record number” pairs then “shell
sort” or similar is an effective way to order
records. However, when RAM runs out and
virtual memory comes into play the
performance of the same algorithm becomes
quite poor. More sophisticated algorithms
can be introduced to deal with large volumes
of data but the trade-offs are often hard to
predict and I would want to measure them to
find the best approach. (For those that are
interested I was reading about “polyphase
merge sort” in the C/C++ Users Journal
recently - the July issue I think - the
exposition was clear, but I can’t recommend
the code that went with the article.)

Back to inlining

Returning to Francis’s theme of inlining
forwarding functions, we now know that
there is a cost implied by this approach. We
can also guess that it may reduce the code
size or runtime marginally. Now, if we’ve
measured the cost (either in code size or run-
time) of keeping these functions “out of line”
and found that we can’t meet the system
requirements without inlining these functions
then we may be willing to pay this price.
(Although, I would regard this particular
technique as a last resort.)

A more serious issue with inlining is that it is
too often used in a completely inappropriate
manner (for example, to avoid creating a
.cpp file and the extra typing concerned). I
want to give an example of this, but all the
cases I can locate raise additional issues
which are beyond the scope of the current
article.

A bad example

The following code is extracted from a
current project (the author has already told
me that he wishes he hadn’t done it this way,
so I don’t think that he’ll mind):
class MMapHier
. . .
// the MSI file for this hierarchy
//
string MSI() const
{
 return base->getName()+"HierMSI.PMH"
}

There follow forty similar functions
including these added by a second
programmer:
//BITMAP
// These functions shouldn't be here,
// should be in a cpp 'cos it's quicker
//
string bitmapGIDOffset() const
{
 return base->getName()+"HierBgo.PMH";
}

string bitmapChars() const
{
 return base->getName()+"HierBch.PMH";
}

string bitmapChains() const
{
 return base->getName()+"HierBol.PMH";
}

string bitmapExtent() const
{
 return base->getName()+"HierBex.PMH";
}

string bitmapMSIMap() const
{
 return base->getName()+"HierBmm.PMH";
}

This particular header is referenced
throughout a large application. I don’t know
what the class is for - what it does is hold a
base location in the file system and generate
filenames for specific types of data. What is
obvious is that every part of the system that
relies on it for the generation of a filename
needs to be recompiled whenever a new type
of data is added.

Ignoring these issues and concentrating on
the use of inline:

1. If any of the existing filenames change it
will provoke a massive recompilation,

 Overload – Issue 22 – October 1997

 Page 23

2. any compilation units that invoke these
functions will have copies of the
corresponding text constants,

3. these functions (which, for example,
construct temporary string objects) are
larger than is ideal for inlining,

4. the function call overhead is hardly a
significant part of the cost of the function
call, and

5. none of the runtime costs are significant
compared to the cost of opening a file!

6. Every module that references this header
devotes some compiler time to parsing it
and some compiler memory to the bodies
of these functions. For one header or one
module this is not a lot but with a
thousand or so "public" headers and a
few tens of thousand modules these
effects mount up dramatically.

Summary

Inlining is a code level optimisation
technique that, like other optimisation
techniques, can be abused. Like other
optimisation it costs development resources.
Optimisation is easy to do on a working
(sub)system and hard to do on one that
doesn’t work. Adding complexity, of
algorithm or of code, without demonstrable
need is either recklessness or ignorance.

The fact that a method is a "trivial"
forwarding function does not of itself justify
inlining it.

Alan Griffiths

alan@octopull.demon.co.uk

 Overload – Issue 22 – October 1997

 Page 24

Whiteboard

Using Algorithms-Sorting
by Francis Glassborow

Quite a bit has been said recently about the
value of the STL containers. However these
are only part of the STL. Just as important if
not more so are the algorithms. Let me take
a little of your time by considering the
process of sorting in C++. The first thing to
note is that STL algorithms provide specific
performance characteristics. No longer do
we have the uncertainty that accompanies
use of qsort from the Standard C Library.
We can also choose to from different sort
algorithms depending on what we need.
Fundamentally we have three sorts, each in
two versions. If we are interested in a fast
sort (but can tolerate a rare pathological case
where performance deteriorates badly) we
can use sort. If we need to preserve prior
order (i.e. elements that compare equal will
retain their existing order-not true of
qsort) or we cannot risk the pathologically
bad cases of sort, we can use
stable_sort. Finally if I am only
interested in the leading elements being

correctly sorted (for example, if I just want
the top three in correct order) I can use
partial_sort.

Each of these three sort functions can be
used with the default of smallest first
(requires that operator< is meaningful for
the items being sorted). Alternatively I can
provide a comparison object (note that
carefully, I will get to those shortly).

In the following code examples I am going
to focus entirely on sorting. I know that
other parts of the STL support other aspects
of the following code but I want to keep a
clear focus in this series of articles and leave
it to you to merge all the aspects into a single
whole. Consider:
void getValue(int * entry)
{
 cout << "Enter an integer:";
 cin >> *entry;
 // code to handle non-integer
 // entry note that quite a lot
 // of polish could be provided
 // in this function
}

int main()
{
 int array[100] = { 0 }; // zero an array of 100 ints
 int i; // ensure i remains in scope
 cout << "Enter up to 100 integers, terminate with any value above 9999" << endl;
 for (i=0; i<100; i++)
 {
 getValue(array+i);
 if (array[i] > 9999) break;
 }
 // at this point i will point
 // one beyond last valid entry
 switch (i)
 {
 case 0:
 cout << "No values provided";
 break;
 case 1:
 cout << "Single value " << array[0] << "Cannot be sorted.";
 break;
 default:
 sort(array, array+i); // LINE X
 cout << "The sorted values, smallest first are:" << endl;
 for(int j=0; j<i; j++)
 cout << array[j] << endl;
 }
}

 Overload – Issue 22 – October 1997

 Page 25

Note how easily the design works. STL
algorithms expect an iterator (int * in this
case) to the first item and one to just beyond
the end. I have not had to track the results of
an early finish. i will always reference the
next potential int; either 100 if the whole
array has been filled or the entry containing
the termination value.

Now what happens if I want to sort in
descending order? No problem as long as I
remember a couple of simple details. I must
#include <functional> to get the
relevant templates and I must remember that
I am dealing with function objects (later I
will write an article specifically on these).
Now I replace LINE X in the above with:
sort(array, array+i, greater<int>());

In other words I pass operator() for the
instantiation of the template class greater
for an int. Do not worry about the magic at
this stage, just enjoy the ease of
implementation.

Now suppose that I want to sort my values
based on the tens digit only. In other words
21, 113, 47, 2 will finish as 2, 113, 21, 47.
No problem. First I must create a suitable
comparison object:
bool compareTensDigit(int i, int j)
{
 // discard units values
 i /= 10; j /= 10;

 // retain original tens place
 i %= 10; j %= 10;

 return i < j;
}

Now I can replace LINE X with:
sort(array, array+i, compareTensDigit);

Now what would happen if I replaced LINE
X with:
sort(array, array+i);
sort(array, array+i, compareTensDigit);

I might have intended that all items with the
same tens digit would be ranked in
numerical order, smallest first. If that

happens I am just lucky because the
algorithm used for sort is selected for
speed not for preserving previous structure
(in other words it has the characteristics of
qsort except that there is a specified
performance requirement). What I need to
do is to write:
sort(array, array+i);
stable_sort(
 array, array+i,
 compareTensDigit);

It might be a little slower (immeasurably in
the current example) but it will do what I
want. I can use the fastest available
algorithm first time round and then preserve
existing structure by using calls to
stable_sort thereafter.

Now suppose that I am only interested in the
top three values from those typed in. I
replace LINE X with:
partial_sort(
 array, array+3,
 array+i, greater<int>());

Note that this sort does not work very well if
I want the top elements from a multiple sort
because, as far as I know, partial_sort
does not preserve prior structure. I think this
makes sense as I would only use
partial_sort when I was wanting the
highest possible performance.

There is a last item that should be dealt with
under the heading of sorting, that is the
minimalist case where I just want to get an
element right with everything before it
unsorted but of an appropriate size and
everything after it likewise. For example
given 5, 7, 2, 3, 9, 1, 1, 7, 3, 4 and a pivot
point at the fourth element the following
would be fine: 1, 2, 1, 3, 7, 5, 3, 9, 7, 4.

Replacing LINE X with:
nth_element(array,
 array+(i>>1),
 array+i);

will make the first half of the array contain
the small values and the second half the
larger ones. The median value will be the

 Overload – Issue 22 – October 1997

 Page 26

middle one (well almost if there are an even
number of items). Like the other sort
algorithms this can take an extra parameter
to provide a comparison object (either a
function address or a full function object)

Well I think that is enough for now. Please
try to abandon your C programming
techniques when writing C++ and move on
to the high level tools provided by the C++
of the late 1990s.

Francis Glassborow

francis@robinton.co.uk

 Overload – Issue 22 – October 1997

 Page 27

Rational Values
Implementation Part 1

by the Harpist

Following on from my previous article
discussing the design of a ‘Rational Type’
class, I shall consider some implementation
ideas.

For the purposes of this column I am going
to assume that integer_type (Francis
suggests that the _t suffix is probably
reserved to Posix, can anyone clarify that?)
is implemented as unsigned int so the
definition of Rational includes:
public:
 typedef unsigned int integer_type;

private:
 integer_type numerator, denominator;
 mutable long double fp_value;
 bool negative;
 mutable bool converted;

Now as this is a simple value oriented type I
would like to leave the copy constructor and
copy assignment to the compiler generated
defaults. Under the rules the compiler is
more likely to be able to generate maximum
efficiency copies if I do not try to interfere
(it can probably use a direct memory copy, at
least until integer_type ceases being a
built-in type.) However this requires that all
memory for the object being copied has been
initialised. So I will need to attend to the
constructors in a little more detail than last
time. As I do not intend to either support
inheritance nor use dynamic resources the
compiler generated destructor will be fine.

Before I handle the constructors I want to
tackle a utility function to reduce a
Rational to canonical form (i.e. the
lowest possible terms).
void Rational::simplify()
{
 if (denominator == 1)
 return; // a whole number

 // discard whole number part
 integer_type hcf =
 numerator % denominator;

 // handle whole number as rational

 if(hcf == 0)
 {
 numerator /= denominator;
 denominator = 1;
 return;
 }
 integer_type temp = denominator;
 while (integer_type quot = temp % hcf)
 {
 temp = hcf;
 hcf = quot;
 }
 // when you get here hcf exactly
 // divided temp and hence is the
 // Highest Common Factor of the
 // original numerator and denominator
 //
 denominator /= hcf;
 numerator /= hcf;
 return;
}

If I remember correctly that is a variation on
Euclid's algorithm, taking advantage of the
efficiency of computers at doing integer
division rather than using the more standard
recursion through subtraction. I think it
gains by reducing the number of decisions.

Now let me deal with the easier of the two
constructors. Its declaration is:
Rational(
 long int numerator = 0,
 long int denominator = 1);

As I am quite happy to allow implicit
conversion from an integer type to
Rational I do not need to qualify this
declaration with the keyword explicit.
However you should note that there is a
possible problem in isolation because if we
did not handle it separately this constructor
would also provide quite wrong conversions
from floating types to Rational. Read on
a bit.

Also if I later decide to implement a multi-
byte integer type I will need to add an extra
constructor to handle construction of
Rational from values of that type.

The definition of this constructor is:
Rational::Rational
 (long int n, long int d)
 : numerator(labs(n)),
 denominator(labs(d)),
 negative(false),
 converted(false)
{
 if (d==0) throw (IllegalDenominator);
 // check if the signs of n & d

 Overload – Issue 22 – October 1997

 Page 28

 // are the same
 if (n/numerator != d/denominator)
 negative = true;
 simplify();
}

How should we provide for accidentally
trying to create a Rational with a zero
denominator? Well we must catch the
problem before there is any call to
simplify() because otherwise we would
get a divide by zero generated by the
operating system. The easiest way to
provide a type to throw in this kind of
instance is to declare a stateless class nested
in Rational. As I do not want to do
anything but signal the problem this will do:
class IllegalDenominator { };

That must be about as minimalist as you can
get. I bet most of you would not expect such
a type, no data, no user written functions,
would ever be useful. I hope you now know
different. While we are handling problems
we might as well add a type to handle the
cases when either the numerator or the
denominator overflows. So that gives us:
class NumeratorOverflow { };
class DenominatorOverflow { };

Can you spot a problem? Sometimes you do
not really care what has gone wrong, you
just want to catch whatever the problem is
and then handle it. One way of handling this
problem is to use an enum. Consider:
enum Exceptions
{
 IllegalDenominator = 1,
 NumeratorOverflow,
 DenominatorOverflow
};

Now the line in the body of the constructor
becomes still works but now it is throwing a
value that must be caught with:
catch(Rational::Exceptions problem)

The only problem with this solution is that
you cannot pass information that will
identify which instance of Rational is in
difficulty. So perhaps you are thinking that
we need something like this:

class Rational
{
public:
 enum Exceptions {
 Unknown,
 IllegalDenominator,
 NumeratorOverflow,
 DenominatorOverflow
 };

 struct Exception
 {
 Rational const * instance;
 Exceptions problem;
 Exception(
 Rational const & inst,
 Exceptions ex=Unknown)
 : instance(&inst),
 problem(ex)
 {}
 // other
 }
};

This is seductively attractive until you start
to think about possible problems and realise
that by the time the exception is caught the
instance of Rational that generated it
might have ceased to exist. Hanging
pointers in exception objects are about as
bad as you can get. What ideas do the
experts have?

Another approach is the construction of an
exception hierarchy. This allows for a more
fine grained catch mechanism. Something
like:
struct Exception {};

struct DenominatorLimits :
 public Exception {};

struct ZeroDenominator :
 public DenominatorLimits {};

struct DenominatorOverflow:
 public DenominatorLimits {};

struct NumeratorOverflow :
 public Exception {};

Now we can write such things as:
catch (Rational::NumeratorOverflow)
{ /* process */}

catch (Rational::DenominatorOverflow)
{ /* process */}

catch (Rational::DenominatorLimits)

{ /* process */}

catch (Rational::Exception)
{ /* process */}

 Overload – Issue 22 – October 1997

 Page 29

Remember that in such cases that the most
derived exception object must be caught
first. I hope you begin to see the range of
choices that need to be considered for even
something as simple as a Rational type.
The benefit is that when you have invested
time doing a robust design you have a solid
class that can be used again and again. Good
design can be developed. Inexperienced
programmers find well designed classes easy
to use. If you find that you need to know a
lot about the inner workings of a class or that
its use springs surprises on you then the class
is probably badly designed. Despite all that
is said about Java, it has just the same design
problems and probably has fewer tools for
solving them. That, of course, is a matter of
opinion but at least think about it before
discarding C++ as being too difficult and
adopting Java because you think it is easier.

Now let me consider one more item (plenty
left over for next time). We need to urgently
deal with the second constructor, the one that
takes a floating point type as a parameter.
The problem that we have is that we have to
convert a long double into a Rational
and not all will work. Perhaps we need to
introduce something like the IEEE concept
of NaNs (not a number). We could do this
easily by adding an extra data member. Do
we want to just track Rational instances
that are simply invalid or do we want to do
more? Let's keep it simple for now and just
track validity. Add bool valid; into the
data for a Rational. Back track to the
constructor we already have and add an
appropriate initialiser into the constructor-
initialiser list. Also set valid to false
before throwing an exception.

Rational::Rational(long double lf)
 : converted (true),
 fp_value(lf)
{
 if (lf < 0)
 {
 negative = true;
 lf = -lf;
 }
 else
 {
 negative = false;
 }
 //
 //note this is implementation dependant

 Overload – Issue 22 – October 1997

 Page 30

 //

 if (lf > UINT_MAX)
 {
 valid = false; // mark as not representable
 numerator = 1; // and place in stable state
 denominator = 0;
 throw (NumeratorOverflow) // or whatever you are using
 }
 integer_type whole = lf; // save the non-fractional part
 long double fraction = lf - whole;
 numerator = fraction * 65520; // see note below
 denominator = 65520;
 // simplify the fractional part as a Rational
 simplify();
 long double check = denominator * static_cast<long double>(whole) + numerator;
 //
 // reduce numerator to available range
 //
 while(check>UINT_MAX)
 {
 check /= 2;
 denominator >> 1;
 }
 numerator = check;// and convert it back to an integer
 return;
}

I would be the first to admit that this is a
pretty lousy conversion. This is exactly why
programming teams need implementation
specialists who have a wide knowledge and
understanding of algorithms. What we need
is the pair of integers that most nearly
represents the long double value passed
in. The above algorithm will badly miss.
For example it will get nowhere near the
good rational representations of π that are
known. The use of 65520 as a scaling factor
is because this is close to the maximum 16-
bit unsigned int limit and has a
substantial collection of factors that
increases the chance that simplify() will
reduce the magnitude of the denominator and
hence reduce the need to further
approximate. It still includes repeated
factors of two which reduces the likelihood
that the scaling required by large non-
fractional parts will even further reduce
accuracy. None the less I am far from happy
and would be delighted if some numerical
expert can come up with a better algorithm.
What is particularly unpleasant is the degree
to which this function depends on the true
type of integer_type.

Well I think this is enough for this time.
Please feel free to criticise and to add your
suggestions.

The Harpist

Some Opportunities to Increase
STL Efficiency

By Sergey Ignatchenko

As the Standard Template Library (STL),
part of the Draft C++ Standard, becomes
more and more popular among programmers,
some interest will be focused on its
performance characteristics. This article is
devoted to the analysis of ways to increase
the efficiency of the STL. Both the offered
solutions are fully compatible with existing
STL versions, and may provide a ten-fold
performance gain.

The Existing Problem

In some collection operations it is necessary
to move objects from one memory location
to another. The STL creates a new object via
the copy constructor, and deletes the
original. If the object being moved is non-
trivial, considerable unproductive time may
be wasted in the construction and destruction
of the objects.

Take for example the vector collection class.
The vector is implemented as a contiguous

 Overload – Issue 22 – October 1997

 Page 31

memory block. This approach has its
advantages, but its serious disadvantage is
that inserting or deleting elements in the
middle of this memory block may take
considerable time.

Consider a sample vector consisting of six
elements e1-e6 of type E, accordingly placed
in positions 0 to 5. In order to insert an
element in the middle of the vector, say
position 2, the STL implementation must:

A: provide space for 7th element;

B: create in position 6 an element, which
must be a copy of e6 (using copy
constructor);

C1-C3: move elements e5-e3 one position to
the right (using assignment operator);

D: assign value e to the element in position
2.

B e6

e1 e2 e3 e4 e5 e6

e1 e2 e3 e4 e5 e6

e1 e2 e3 e4 e5 e6

e1 e2 e3 e4 e5 e5 e6

e1 e2 e3 e4 e4 e6 e6

e1 e2 e3 e3 e5 e6 e6

e1 e2 e e4 e5 e6 e6

e

A

C1

C2

C3

D

0 1 2 3 4 5 6

It is obvious that two copies of e6 element
exist between steps B and C1, and one of
these copies (in position 5) will be deleted
immediately. The same happens during steps
C1-C3: copies of e5-e3 elements are made,
and the original elements are immediately
deleted. It has little effect if type E is trivial
(int, for example), but if type E is
complicated enough (vector<vector<int>>,

for example), two serious problems may
arise:

1. Both copies of one element use memory,
and if the objects are large an out-of-memory
problem may occur.

2. Copy element creation and original
element deletion take time and may cause an
essential increase in program execution time.

The above problems are typical not only for
vectors, but also for some algorithms, such
as remove and remove_if.

As a simple class example, which has
nontrivial copy constructor and assignment
operator, let us consider the PseudoString
class:
class PseudoString
{
 char* s;

public:
 PseudoString()
 {
 s = 0;
 }
 PseudoString(const char* str)
 {
 _init(str);
 }
 PseudoString(
 const PseudoString& other)
 {
 _init(other.s);
 }
 void operator =(
 const PseudoString& other)
 {
 if(this != &other)
 {
 delete [] s;
 _init(other.s);
 }
 }
 ~PseudoString()
 {
 delete [] s;
 }

private:
 void _init(const char* str)
 {
 if(str)
 {
 s = new char[strlen(str) + 1];
 strcpy(s, str);
 }
 else s = 0;
 }
};

 Overload – Issue 22 – October 1997

 Page 32

Move Instead of Copy

One of the possible solutions to overcome
the above problem is to change the STL
implementation by replacing the use of the
copy operation for that of a move operation,
which in most cases can be implemented
more efficiently.

Let us consider the assign_move(E& a, E&
b) function, which is essentially a "move
operator". If after applying it to objects A
and B the following conditions are valid:

• object A becomes equal to the original
value of object B;

• object B remains a correct object of type
E, whilst the actual value of object B is
not meaningful.

The “move constructor”, implemented as the
construct_move (E* a, E& b) function is
defined in similar way.

To benefit from the replacement of copy
operations with move operations the
following changes to the STL are required:

1. Define template functions
construct_move and assign_move, which
calls copy constructor and assignment
operator accordingly:

template <class T1, class T2>
inline void construct_move(T1* p,
 T2& value)
{
 construct(p, value);
}

template <class T1, class T2>
inline void assign_move(T1& a, T2& b)
{
 a = b;
}

2. Introduce functions
move/move_backward/
uninitialized_move similar to copy/
copy_backward/uninitialized_move but
based on construct_move and
assign_move:

template <class ForwardIterator,
 class OutputIterator>
OutputIterator move(
 ForwardIterator first,
 ForwardIterator last,
 OutputIterator result)
{
 while (first != last)
 assign_move(*result++, *first++);
 return result;
}

3. Replace copy/copy_backward/
uninitialized_copy calls, with move/
move_backward/uninitialized_move
calls, in the situations similar to
mentioned above:

void erase(iterator position)
{
 if (position + 1 != end())
 move(position + 1, end(), position);
 --finish;
 destroy(finish);
}

A programmer using the above modified
STL is now able to define, apart from
traditional copy constructor and assignment
operator, their more efficient "twins":
construct_move the "move constructor" and
assign_move the "move operator", for
example:
class PseudoString
{
 ...
public:
 void swap(PseudoString& other)
 {
 ::swap(s, other.s);
 }
};

inline void construct_move(
 PseudoString* p, PseudoString& value)
{
 new(p) PseudoString();
 p->swap(value);
}

inline void assign_move(
 PseudoString& a, PseudoString& b)
{
 a.swap(b);
}

If a programmer uses this opportunity he
may get a considerable reduction in program
execution time.

 Overload – Issue 22 – October 1997

 Page 33

Otherwise the calls of construct_move/
assign_move functions correspond to calls of
their template versions, which, in turn, are
equivalent to calls of copy constructor/
assignment operator. Thus, a program using
modified STL will operate just like the
program using original STL.

Bitwise Move

Let's continue with our performance
improvements. By doing without class E
copy constructor and assignment operator
and using a bitwise move of memory block
instead. This is possible for most, but not for
all classes.

Let's consider class X
class X
{
 X* x;

public:
 X()
 { x = this; }

 X(const X& other)
 { x = this; }

 void operator =(const X& other)
 { x = this; }

 void f()
 { assert(x == this); }
};

This class contains data member x, which is
always (including the case when it is being
copied/assigned) equal to this. It is obvious
that in case of bitwise move this equality will
be broken and an error will occur. Thus the
possibility of bitwise move depends upon
class E nature.

It is necessary to make the following
changes in the STL in order to use bitwise
move for vector optimization:

1. Define a can_bitwise_move function
template, returning false.

2. Use bitwise copy where possible, provided
that for the class, contained in the vector,
can_bitwise_move returns true.

After that a programmer who uses modified
STL is able to define can_bitwise_move

function which returns true, for class E, and
let STL use bitwise move for this class. Here
is an example of implementation of this
function for class PseudoString:
inline bool can_bitwise_move(
 const PseudoString*)
{
 return true;
}

"Bitwise move" optimization is more
efficient for vectors, than "move instead of
copy" optimization. On the other hand
"bitwise move" optimization (contrary to
"move instead of copy" optimization) can
not be used for algorithms.

Optimization

Three implementations of STL libraries were
used for optimization:

1. Hewlett-Packard STL (1994), (ftp://
butler. hpl. hp. com)

2. Silicon Graphics STL (1996), (http://
www.sgi.com/ Technology/ STL/)

3. adaptation of Silicon Graphics STL by
Moscow Center for SPARC Technology
(1997), (http:// www.ipmce.su/ ~fbp/ stl/).

Optimized versions of these STL
implementations are available at ftp://.... .
Besides, Microsoft STL implementation
supplied with Microsoft Visual C++ 4.2
was used for check timing.

Both above methods of STL optimization
("move instead of copy" and "bitwise
move") were implemented. A number of
class vector member functions (insert, erase,
reserve) were optimized. Besides, some
algorithms (remove, remove_if, unique) were
optimized using "move instead of copy"
method.

Optimization "move instead of copy" is on
by default; macro definition
__STL_NO_MOVE_INSTEADOF_COPY
should be used to disable the
optimization. Optimization "bitwise move" is
off by default; macro

 Overload – Issue 22 – October 1997

 Page 34

__STL_BITWISE_MOVE should be defined
to enable the optimization. If macro
__STL_NO_MOVE_INSTEADOF_COPY is
defined and macro __STL_BITWISE_MOVE
is not defined, then optimized STL is
identical with the original STL.

Comparative Efficiency Analysis

Two test programs - testmax and testrnd
were developed to compare efficiency. Both
programs were compiled with Microsoft
Visual C++ 4.2 compiler in "Release"
configuration. Check timing was made on
Pentium 100 with 32 MB RAM running
under Windows NT 4.0 operating system.

testmax program was developed to
demonstrate the maximum gain of
optimization. The program constructs vector,
adds 1 complicated element (E(M)), and then
inserts simple element (E(0)) in the
beginning of the vector K times. Here M
describes the complexity of element.

testmax Execution Time, ms

M MS HP SGI MOV
E

BIT

16 400 1400 1400 70 40

32 600 1600 1550 75 40

64 1400 2400 2500 80 40

128 3350 4000 4250 85 45

256 21700 21200 25200 95 60

512 16000
0

13200
0

140000 180 150

1024 41000
0

43000
0

440000 440 400

MS Microsoft STL

HP Hewlett-Packard STL

SGI Silicon Graphics STL (both
original and adapted)

MOV
E

STLs optimized by "MOVE
INSTEAD OF COPY" method

BIT STLs optimized by "BITWISE
MOVE" method

The gain in program speed, resulting from
optimization, depends on element
complexity and varies from 10 to 1000
times.

The second program - testrnd - was
developed to estimate the average gain
resulting from optimization in some standard
case. The program constructs a vector
consisting of PseudoString-type elements
and makes random manipulations with this
vector (mostly insertions and deletions)
NRND times.

testrnd Execution Time, ms
NRN

D
MS HP SGI MOVE BIT

512 260 185 185 40 30
1024 630 460 470 70 50
2048 1350 1000 1050 150 100
4096 2700 2000 2000 290 210
8192 20000 1550

0
1550

0
1000 500

16384 26000 1970
0

2000
0

1450 850

32768 12650
0

9750
0

9750
0

5300 210
0

The gain in program speed depends on
NRND and varies from 5 to 50 times. Thus
the testing showed that the above STL
optimization methods may enable
considerable gain in program speed, and
in special cases this gain can exceed 1000
times.

Compatibility

Although both described methods of STL
optimization imply interaction with the
programmer using it, they are 100%

 Overload – Issue 22 – October 1997

 Page 35

compatible with the original STL. That
means that a correct program developed for
original STL will always work with
optimized STL, and vice versa. It is also
obvious that the program speed is improved
only when two following conditions are
met:

1. The optimized STL is used;

2. The program supports construct_move,
assign_move and/or can_bitwise_move
functions for some classes (the program
is STL optimization-aware).

 STL
optimization
non-aware

STL
optimization
aware

Original + +

Optimized + FAST

1. + program operates at regular speed

2. FAST program operates faster due to
STL optimization

Summary

The key to the technique described here is in
interaction between STL writer and
programmer using it. Use of this technique is
not limited to methods of optimization
described in this article. On the other hand,
these methods can be used to make some
other optimizations, such as optimization of
deques. Thus there are still lots of
opportunities to increase STL efficiency.

Sergey Ignatchenko

ignatch@rtsnet.ru

 Overload – Issue 22 – October 1997

 Page 36

editor << letters;

In Defence of Standard C++

From The Harpist

I found the item from Alan Griffiths in
Overload 21 disturbing. When I coupled that
with your open letter about the future
directions for Overload I felt that I had to
respond.

I have been around C++ for almost a decade
and during that time I have watched it
develop from the language of the first edition
Bjarne Stroustrup's 'The C++ Programming
Language' through that of the second edition
into that of the third.

In the first edition we have, basically, an
extended C. The extensions produced a
much nicer tool for high-level development,
but fundamentally the modifications and
book were primarily addressed to C
programmers. The language was young and
had yet to develop its own native idioms. At
that stage a good working knowledge of C
was a pre-requisite for mastery of C++.

By the second edition certain aspects of the
language were beginning to gel. However
the language was at the stage where all its
inner workings were exposed even to the
novice. While the language enabled
implementation hiding etc. the user was
expected to know far too much. At this stage
we began to hear rumblings about how
complicated C++ was. The disgraceful
inadequacies of many writing books for
newcomers and providing training only
made matters worse. We had situations were
programmers were learning C++ one week
and presenting training courses on it less
than three months later. We had authors of
poor books on C rehashing their work and
selling the results as books on C++. This is
still a major problem today.

With the third edition we begin to see a
mature product where much of the
complexity is being encapsulated. We still
have serious problems with our development
tools. The diagnostic messages being
produced by leading products look like
garbage. However it is possible (though
trainers in general have yet to catch up) to
introduce a non-programmer to C++ without
any of the mystifying mumbo-jumbo that has
made programming so difficult in the past.
Of course if you insist upon using char * for
strings and manually iterating across an array
used as a container your code will be
difficult, bug-ridden and hard to maintain.
The point I want to make is that it does not
have to be that way. Compare the controls
of a modern jet airliner with those of a prop
driven aircraft of the 50's; the complexity is
now hidden, and information is provided on
a need to know basis. The same contrast
exists between the C++ of 1985 and the best
C++ of 1997. Unfortunately we not only
have millions of lines of legacy code,
mountains of ill-conceived poorly written
C++ books, thousands of inadequately
trained C++ programmers but we also have
managers looking for that magic cure-all.

As a result we are now producing millions of
lines of badly written Java, mountains of ill-
conceived poorly written Java books and
tens of thousands of inadequately trained
Java programmers. We also, for a brief
moment, have managers who, tired of the
long time it has taken to develop C++ and
continual complaints about how difficult it
seems to have become, believe this brand
new shiny object will magically cure their
problems.

One task that the C++SIG should take on
board is that of ensuring that we have a clear
grasp of what C++ is and what it can achieve
so that we do not scurry off to the newcomer

 Overload – Issue 22 – October 1997

 Page 37

on the block in the home that it will solve all
our problems for us.

OK, so I do not agree with Alan. Now what
about the future directions for Overload? I
believe that lead by such contributors as
Francis with his love of the arcane, Overload
managed in the past to miss the needs of the
serious C++ programmer. The first thing we
should be clear about is that Overload is the
voice of the C++SIG. If you want a Java
SIG create one. Just as C Vu covers
elementary aspects of C++ (and Java)
Overload can, and should cover elementary
aspects of languages related to C++.
Members should not bury their heads in the
sand and ignore Java, Objective C,
Smalltalk, Eiffel etc. But the focus should
be 'what C++ programmers need to know
about these things.' Articles on how to
interface Java with C++ would be fine.
Articles on the criteria for choosing Java,
Eiffel or whatever instead of C++ are also
fine but an article on Java programming out
of the context of C++ would, in my opinion,
be stretching it.

I want to see articles on other aspects apart
from pure coding. Analysis and design
methodologies are an important aspect of
being a C++ user. I would love to read
articles about testing, multithreading, parallel
processing etc. Articles about patterns are
fine but I would prefer to see them focus
more on the intermediate and low level
(idioms) than on the large scale Design
Patterns that are characteristic of TgoF's
book. As many members are less than
familiar with patterns at any level I would be
delighted to see a regular spot where a
design pattern was explained in simple
terms.

We should bare in mind that there are at least
three separate types of C++ programming:
class design, class implementation and
application programming. Each of these
requires a different set of skills and insights.
Only the rarest programmer will be good at
all three, however Overload should be
addressing the needs of all of them. While I

can do a fair job at designing a single class, I
am much less able at class hierarchy design
(I would love to read a series on that). I am
reasonable at class implementation and only
the kind would describe me as even capable
when it comes to application design and
implementation. Do not even mention
analysis to me, I have no idea about how to
do it.

I think that the readership would be far
happier to see Overload focus on helping
them to write better C++ than following the
latest over-hyped language trend. Of course
we have to remember that the writers are a
sub-set of the readership so when it comes
down to it we will only get what they choose
to write about.

The Harpist

More Defence of Standard C++

From George Wendle

I was amazed at Alan Griffiths' article in
Overload 21. I do not think that there was
much choice over when the C++
standardisation effort should start even
though the language was only half complete
in 1990. The support for exceptions, generic
programming etc. was not some fancy new
idea but an integral part of the language as
conceived by its parent, Bjarne Stroustrup.
A few things were introduced in addition to
the original design and some requirements
were relaxed (the return type of polymorphic
functions). Support for type information was
standardised only after numerous libraries
had generated their own work rounds.
Namespaces were introduced to fix growing
problems with name collisions and the new
casts were introduced because the old C
sledge-hammer simply could not cope. The
Standard Template Library was not an
addition to the language but it was the single
most dramatic enhancement made in the last
decade. It may not be perfect but it has
made C++ dramatically more useable by

 Overload – Issue 22 – October 1997

 Page 38

ordinary programmers (if only people would
explain it to them).

At last we have C++ stabilising and maturing
into a language that meets its original
promise of addressing the needs of a wide
community. So what does Alan advocate?
We all jump for Java while it is still in a state
of extreme flux. I can think of nothing
worse than to take people who have just
begun to understand modern C++ and then
dump Java on them. That is a recipe for total
confusion. They will write something that is
simultaneously bad C, bad C++ and bad
Java. Programmers who already struggle
with the semantic differences between
references and const references are not likely
to grasp the subtle difference between built-
in and class types in Java. Java variable
names look like C ones but are entirely
different. I can think of no bigger potential
for disaster than to take a befuddled C++
programmer and move them to writing Java
to mix with existing C++.

Those of us who live through change see far
more difficulties then those that start at the
end. The C++ as described in 'The C++
Programming Language, 3rd ed.' seems to be
an excellent tool. I hope that before jumping
for the next fad, most of you will learn the
idioms of modern C++ and stop complaining
about complexity brought about by writing
code at an unnecessarily low level.

George Wendle

Overload Content

From Francis Glasborow

Judging by the two letters that have been
forwarded through my mail box, Alan
Griffiths’ item in the last issue of Overload
has touched on a couple of sensitive nerves.
I think that the issues need airing but I also
think that we should think carefully about
what this SIG is. In the past I have
published the occasional article in C Vu on
such things as awk, assembler programming
etc. but I am pretty sure that the membership

would get pretty annoyed if I started a
regular section on such things as Visual
Basic or Delphi. They would probably be
happy if I published the occasional
informative article about what these have to
offer, or something about how to access a
DLL written in C/C++ from them but there
is definitely a boundary all be it an ill-
defined one. It is part of the job of an editor
to draw the line. You can be a conservative
editor who always stays well within the
remit or you can stick your neck out and get
thoroughly reprimanded when you over-step
some reader's concept of where the boundary
lies.

Java (and Objective C, the various parallel
C's, Python etc.) is more problematical
because they are close relations. If we could
get contributors on Objective C, I am sure
that such material belongs in either C Vu or
Overload. Material on parallel C's definitely
belongs in C Vu and I would be delighted to
be able to publish regular material on these
(one way or another they will become
increasingly important in the future).

Python is interesting and deserves greater
exposure because that language has a
number of interesting features which include
excellent facilities for mixed programming
with C and C++. Again the problem is the
lack of someone who is willing to write a
regular column.

That leads me to Java. It looks like C/C++.
It certainly should interest users of C++.
However it has been seriously over-exposed
recently and I suspect that its problems are
only just beginning. One problem that
should not be shoved under the carpet is that
it was not designed for traditional
development where the programmer uses a
text editor. The whole monolithic structure
assumes that you will have appropriate tools
to present alternative views of the same
material. I am also unhappy with writing
debugging/testing code for Java. That may
just be me but I suspect that there are serious
problems of scalability awaiting exposure.

 Overload – Issue 22 – October 1997

 Page 39

I have yet to see anyone write native Java (to
borrow an expression from the Harpist's
recent C Vu item). I think that most code is
still thinly veiled C or C++. C++ used to
write C usually results in both poor C and
poor C++--look at most of the dozens of
introductory books on C++. There is still
work to be done on the Java language itself.
Possibly these developments will be small,
but I am not convinced that this will be the
case. Many thought that the developments
of C++ would be small (had they been so
and the work had stopped where C++ was in
1989 we would have had a language of
passing interest) but in the event much work
was needed to consolidate and complete the
language. Alan comments on the
standardisation of C, actually from the
insider's perspective much more had to be
done than appears on the surface. Some of
the 'simplicity' was bought at a price of
ruthlessly postponing some developments. I
think that the next C standard will pay a very
high (I am still trying to decide if that should
be unacceptably high) price to retain the
apparent simplicity. Actually it is
immensely difficult to write fully
conforming C and most C programmers
completely ignore the multitude of test
macros and the like that are required to write
C that can be reliably ported from platform
to platform.

I think that Java should very definitely be
classified as an experimental language for
some time to come. I would be happy to see
articles on it in both C Vu and Overload but I
would still want to see our major focus
elsewhere.

What I would very much like to see would
be articles that explored how a selection of
algorithms and patterns would be naturally
coded in a range of languages from the C
family. Let me set a couple of tasks. How
would you implement?

1. A lottery number generator (x numbers
from y choices, with possible constraints
if you want to be ambitious)

2. A search of a text file for a match of a
text string (including wild cards if you
are ambitious).

in the language(s) of your choice. It would
be interesting if you also provided your
criteria for language choice. Also do not feel
constrained to limit yourself to languages I
have mentioned in this letter.

What would be nice is if every reader spent a
little time on one of these problems and
submitted something. Of course that won't
happen but how will you feel when you see
dozens of contributions next time and, too
late, you realise that you could have done it
better, differently or...?

Francis Glassborow

francis@robinton.co.uk

 Overload – Issue 22 – October 1997

 Page 40

Finally Support for Alan’s View

From Chris Southern

I must start with an expression of fellow
feeling for Alan Griffiths.

Every time I try to get a handle on the first
stage of re-use in C++, i.e. the Libraries, the
rug is smartly whipped from under my feet.

Usually I manage to buy a decent book on
part of the current idea of the libraries only
for it to be outdated in very short order.
Sometimes it was outdated when I bought it,
but the articles telling me the new one true
way have been in the LONG pipeline of
publication to C++ Journal etc.

How stable is it and when are we going to
see helpful reference works on it?

Now an example by way of illustration of
‘helpful’ I recently needed to prepare some
formatted data to be returned by a member
function. Being a dutiful observer of the
axiom about wheel re-invention and having
been abjured to wean myself off char* I
wanted to put output into a String. The first
part of the Metrowerks Code Warrior
documentation on the ‘Standard’ Library
concerning this, showed two constructors for
a basic_ostringstream< charT,
char_traits<charT>> one with only a
mode parameter, and one with an additional
String.

With syntax, but no semantics given, I
foolishly thought that the second constructor
must be just the thing, obviously it attaches a
stream to a string, and I could pass the string
back later. In my defence I cite the reference
itself: “the basic_stringstream constructor is
overloaded to accept a an object of class
basic_string for output.”

This is completely in defiance with the
signature of the constructor, which is:

explicit basic_ostringstream
(const basic_string<charT>

&str, ios_base::openmode which
= ios_base::out)

note the const! The thing actually uses the
input string to initialise the completely
separate internal string used as a buffer.

This is obviously a definition of unhelpful.

Chris Southern
csouthern@brasspaw.cix.co.uk

 Overload – Issue 22 – October 1997

 Page 41

Readership Feedback

From The Harpist

Well, nothing has been forwarded to me
from my previous ‘Rational Type’ article,
which I find a bit disappointing. Lack of
response generates a mixture of reactions
within me. Perhaps the material was to
simple and left readers feeling bored.
Perhaps it was badly written so that most did
not understand what it was about. Perhaps
the idea of a complete design was simply
beyond readers who had time to do anything.
I simply do not know. What I am certain of
is that some interaction is necessary. I was
talking to Francis recently about his regular
column in EXE Magazine and he told me
that he rarely gets more than a couple of
letters, emails etc. about any column even
when he has made a serious mistake. He
finds that despite being paid for his column
he would still like a response. All the more
is that the case when the effort is entirely
voluntary. I wonder how you would feel if
you seemed to be completely ignored?
Imagine yourself presenting an item at a
conference and when you had finished
everyone just got up and walked out. Would
you feel like doing anything else for such an
event?

By the way, that reminds me that I should be
thanking Francis and Parkway Gordon for
the superb event they put on. The organisers
should feel very pleased with themselves for
having created such an enjoyable and
informative event. I attend quite a lot of
conferences and it is rare to find one with
quite such a buzz. Those of you who went
certainly understood the value of talking to
each other. I particularly appreciated the
way that so many of the speakers joined in
with the spirit of the event. I hope that many
of you will flood Francis with ideas for next
time. Changing the World is hard work and
needs teamwork.

Pages of letters responding to material
published in Overload would be nice and

would certainly encourage the regular
contributors to keep going.

The Harpist

 Overload – Issue 22 – October 1997

 Page 42

ACCU and the ’net

ACCU.general

This is an open mailing list for the discussion of C and C++ related issues. It features an
unusually high standard of discussion and several of our regular columnists contribute. The
highlights are serialised in CVu. To subscribe, send any message to: accu.general-
sub@monosys.com

Demon FTP site

The contents of CVu disks, and hence the code from Overload articles, eventually ends up on
Demon’s main FTP site: ftp://ftp.demon.co.uk/accu Files are organised by CVu issue.

ACCU web page

Thanks to Net Access and DeMontfort University we now have a machine permanently connected
to the Internet. The official ACCU web pages have moved to a new home. http://www.accu.org/

C++ – The UK information site

This site is maintained by Steve Rumsby, long-serving member of the UK delegation to WG21
and nearly always head of delegation. http://www.maths.warwick.ac.uk/c++

C++ – Beyond the ARM

Sean Corfield maintains a set of pages about recently added C++ features. He welcomes
feedback on their content. http://www.ocsltd.com/c++

Contacting the ACCU committee

Individual committee members can be contacted at the addresses given above. In addition, the
following generic email addresses exist:
caugers@accu.org, chair@accu.org cvu@accu.org
info@accu.org info.deutschland@accu.org membership@accu.org
overload@accu.org publicity@accu.org secretary@accu.org
standards@accu.org treasurer@accu.org webmaster@accu.org

There are actually a few others but I think you’ll find the list above fairly exhaustive!

Beyond ACCU...UseNet

This small section will highlight other internet resources that are relevant to Overload readers.

UseNet groups have variable quality. The moderated news groups (eg.. comp.lang.c.moderated,
comp.lang.c++.moderated) are easy to monitor. The other groups are harder work but they tend
to have summaries of “frequently asked/answered questions” (FAQs), posted by volunteers to
each newsgroup. Web browsers can be used to get UseNet FAQs.

http://www.lib.ox.ac.uk/internet/news/faq/by_group.index.html.

 Overload – Issue 22 – October 1997

 Page 43

It you have a useful link, share it! (Please send it to new-links@accu.org).

 Overload – Issue 22 – October 1997

 Page 44

Credits

Editor
John Merrells

merrells@netscape.com

4 Park Mount,
Harpenden, Herts, AL5 3AR,

U.K.

1111 El Camino Real #109-264,
Sunnyvale, CA 94087,

U.S.A.

Readers
Ray Hall

Ray@ashworth.demon.co.uk

Ian Bruntlett
ibruntlett@libris.co.uk

Einar Nilsen-Nygaard

EinarNN@atl.co.uk
einar@rhuagh.demon.co.uk

Production Editor
Alan Lenton

alan@ibgames.com

Advertising
John Washington

accuads@wash.demon.co.uk
Cartchers Farm, Carthouse Lane

Woking, Surrey, GU21 4XS

Subscriptions
David Hodge

davidhodge@compuserve.com
31 Egerton Road

Bexhill-on-Sea, East Sussex. TN39 3HJ

Copyrights and Trademarks

Some articles and other contributions use terms which are either registered trademarks or claimed
as such. The use of such terms is intended neither to support nor disparage any trademark claim.
On request, we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of ACCU.
An author of an article or column (not a letter or review of software or book) may explicitly offer
single (first serial) publication rights and thereby retain all other rights. Except for licences
granted to (1) Corporate Members to copy solely for internal distribution (2) members to copy
source code for use on their own computers, no material can be copied from Overload without
written permission of the copyright holder.

Copy deadline

All articles intended for inclusion in Overload 23 should be submitted to the editor, John Merrells
< merrells@netscape.com>, by November 14th.

 Overload – Issue 22 – October 1997

 Page 45

	Contents
	Editorial
	C++
	Class Life {} Merrills;
	Better Living Through Directories
	LDAP
	My new found Zeal
	The Joy of Fry’s
	Copy deadline

	Software Development in C++
	Allocation StatsBy Kevlin Henney
	Defining the interface
	Defining the implementation
	Replacing new and delete
	Reporting back
	Closing thoughts
	References

	An Introduction to the UMLBy Richard Blundell
	Intentions
	History of the UML
	Class Diagrams in the UML
	Class Attributes
	Class Operations
	Class Associations
	Aggregation
	Composition
	Generalisation and Inheritance
	Conclusion
	References

	The Draft International C++ Standard
	extern "X" and namespacesby George Wendle

	C++ Techniques
	Make a date with C++And so to constBy Kevlin Henney
	Banishing magic
	diff C C++
	diff C C++ | more
	const and Pointers
	Access rights
	Summary

	Premature Optimisation By Alan Griffiths
	Inlining
	Priorities
	When to optimise
	Back to inlining
	A bad example
	Summary

	Whiteboard
	Using Algorithms-Sortingby Francis Glassborow
	Rational ValuesImplementation Part 1by the Harpist
	Some Opportunities to Increase STL EfficiencyBy Sergey Ignatchenko
	The Existing Problem
	Move Instead of Copy
	Bitwise Move
	Optimization
	Comparative Efficiency Analysis
	testmax Execution Time, ms
	Compatibility
	Summary

	editor << letters;
	In Defence of Standard C++
	More Defence of Standard C++
	Overload Content
	Finally Support for Alan’s View
	Readership Feedback

	ACCU and the ’net
	ACCU.general
	Demon FTP site
	ACCU web page
	C++ – The UK information site
	C++ – Beyond the ARM
	Contacting the ACCU committee
	Beyond ACCU...UseNet
	Credits
	Copyrights and Trademarks
	Copy deadline

