
 ISSN 1354-3172

Overload

Journal of the ACCU C++ Special Interest Group

Issue 23

December 1997

 Overload – Issue 23 – December 1997

 Page 2

Contents
Editorial 3
Software Development in C++ 5
UML - Objects and Patterns by Richard Blundell 5
Candidates for inline by Francis Glassborow 9
The Draft International C++ Standard 12
The Casting Vote by Francis Glassborow 12
The Story of auto_ptr A Cautionary Tale by Francis Glassborow 15
C++ Techniques 19
STL Vectors by Sergey Ignatchenko and Dmitry Ligum 19
Whiteboard 23
Rational Values Implementation Part 2 by The Harpist 23
A Finite State Machine Design II by Einar Nilsen-Nygaard 28
Debug new and delete Preamble by Peter A. Pilgrim 34
editor << letters; 37
Beyond ACCU... C++ on the ‘net 39
Credits 41

 Overload – Issue 23 – December 1997

 Page 3

Editorial

From C++ To C

Once upon a time I held sway over a set of
interacting multi-threaded objects marshaled
with the power of object oriented design
methods. Now I find myself faced with a
large body of aging C code, written by mean
fisted unix wizards. You know that tight
scrawl they have: 40 columns wide, 80
columns deep. I’ve got that sleepless
‘rewrite’ feeling. But, change it, and break
it. Not wise on a schedule that runs in
internet time (one year = three months).

Why C?

This code builds and ships on 17 platforms.
C is portable. C++ is not. But, the big news
of this issue is that it will be next March!
(See Francis’ column in the Standard
section.)

The C++ Standard has taken so long to
arrive that many projects have switched to
Java to provide the ‘write once, run
anywhere’ holy grail.

Bad C

So, we’re stuck with C for the moment. But,
it’s not the language that makes code bad.
You can write really good C. So what’s
unpleasant about this code:
• Big functions
• Many exit points
• Backward and forward goto’s. Both to

repeat algorithms, and to clean up re-
sources.

• Unused functions, declarations, and in-
cludes.

• No function naming conventions.
• Features thinly spread over the source

instead of tightly corralled in their own
modules.

• Functions with many side-effects, instead
of one operation.

• Transfer of object ownership between
caller and callee.

• No hope for reuse.

Good C

So how can this general badness be migrated
to something more palatable?
• Enforce partitioning. Low coupling,

high cohesion.
• Define module interfaces.
• Provide explicit structure constructors

and deconstructors.
• Provide object scoping with this pointers
• Naming convention of <ob-

ject>_<operation>

Look at Safer C and Lakos for help

How can you build new features, in a timely
manor, on top of old code? I think you’ve
got to spend time re-organising and
rewriting.

Movies

It’s odd to work in a company where people
can make it their lifestyle. They feed you,
clothe you, and entertain you. Free food,
drink, t-shirts, jackets, and film tickets.
They’ll book your holiday, arrange an
evening out, send a birthday gift, or wait at
home for the plumber. There’s even a
dentist on wheels. Weird!

Anyway, the point is that I’ve been to see
some films recently, and I know you won’t
have got them yet, so I get to do some film
reviews.

Starship Troopers was really bad. Teenage
romance script with lots of limbs being
ripped off. Unfortunately not so bad that it
enters the ‘so bad it’s funny’ category.

Alien Resurrection was ok’ish. Not as bad
as Alien 3, but not as good as 1 or 2. A few

 Overload – Issue 23 – December 1997

 Page 4

neat twists on the theme but they’ve run out
of ideas, and the ending was soppy.

Gattaca. Fantastic. Set in a near future
around the theme of human genetic
manipulation. Engrossing complex story
with great cinematic atmosphere.

Sign off

Appropriate seasonal salutations to you all,
and remember… every child is expecting an
LDAP server under the tree this Christmas!

Copy Deadline

All articles intended for publication in
Overload 24 should be submitted to the
editor, by Janurary 15th.

John Merrells
merrells@netscape.com

 Overload – Issue 23 – December 1997

 Page 5

Software Development in C++

UML - Objects and Patterns
by Richard Blundell

Introduction

Last time I gave some background on the
Unified Modelling Language (UML), and
discussed how to use the UML to describe
and document classes and their relationships
with other classes [1]. This time, after a
brief memory jogger, I shall discuss some
changes that have occurred following the
publication of version 1.1 of the UML in
September. After this, I shall show how
objects, rather than classes, can be
represented, and how the concepts covered
so far can be used to describe typical design
patterns.

A Refresher

To jog your memory, classes were shown as
rectangles with up to three compartments,
the top one containing the class name, the
next showing the class attributes (member
variables), and the bottom one listing class
operations (methods). Associations between
classes were shown using solid lines. An
aggregation diamond was used to show how
one class could hold references (i.e. C++
pointers or references) to others, whereas a
filled diamond showed composition. Roles
of associations and multiplicity values were
used to adorn each end of association lines to
add further information. Finally, a hollow
generalisation arrow was employed to show
inheritance relationships between classes.
Examples of some of the notation covered
are shown in the figures below.

UML 1.1

At the beginning of September 1997, version
1.1 of the UML was published. As well as
some extensions, simplifications and
unifications of the existing notation, there

were a number of small changes that either
modified or extended what I described last
time. In order to keep abreast of the latest
developments, I shall quickly cover some of
the main changes to static structure diagrams
here.

The list compartments described last time
can now hold the name of the compartment
centred at the top, so you may see classes
with the labels “attributes” and “operations”
explicitly showing which is which, and to
minimise confusion if one is omitted.
Furthermore, user-defined list compartments
can now be appended to show additional
information such as exceptions thrown by
the class, or business requirements
addressed. These user-defined
compartments should, of course, be labeled
appropriately and consistently.

Several handy boolean properties1 have
been defined for operations and attributes,
and can appear, in curly braces, after the
particular element in the list. The {frozen}
property2 signifies an attribute that cannot
change once defined, such as a C++ const
member variable. The {query} property
does the equivalent thing for an operation,
showing that it does not modify the state of
the class instance when called. Typical
“Get…” methods could be marked {query}.
Finally, {abstract} signifies an operation
that has no implementation defined, and so
corresponds to a C++ pure virtual function.
An alternative to this last one is to write
abstract operations in italics. You often see

1 I shall discuss properties and constraints in
the future. For now, they can be taken to be
tags that can be attached to elements in a
model.
2 This is shorthand for {frozen = true} –
properties are key-value pairs, and the de-
fault for boolean properties is ‘true.’

 Overload – Issue 23 – December 1997

 Page 6

class names in italics as well if the classes
are abstract.

Another extension was made to visibility
markers, the symbols that show access levels
to attributes and operations. Instead of the
symbols +, # and -, the keywords {public},
{protected} and {private} can be used.
These will be more familiar for those used to
C++ and Java, and have the advantage that
they can apply to blocks of attributes or
operations just like in a class declaration, and
so need not be continually repeated. Some
tools, however, tend to use coloured icons
for visibility markers by default.

Objects

In the UML, there is a distinction that is
made between types and instances. A
number of model elements in the UML are
members of type-instance pairs. For
example, objects are instances of a class3
(the corresponding type). Similarly, the
associations between classes that we saw last
time have instances called links, which show
how objects interrelate. Parameters passed
to operations can be thought of as types,
whereas the values that are bound to them at
run time are instances of those parameters.
A call itself can be thought of as an instance
of an operation. In most of these cases,
because of the similarity between each
member of a pair, the same symbol is used to
describe both. The difference between them
is often shown by underlining the name of
the element (and by giving it a different
name as will be seen later).

Hedgehog

slugsInStomach : int = 0

eat(numSlugs : int) : void

hedgey : Hedgehog

slugsInStomach = 3

hedgey : Hedgehog

hedgey

:Hedgehog

Hedgehog

3 In fact, in UML, a class can itself be an in-
stance of the type metaclass.

Figure 1 – Classes and Objects in the UML.
On the left we have two representations of a

class. On the right we have four
representations of an object, including an

unnamed object at the bottom.

Examples of representations of a class and
objects of that class are shown in figure 1.
Note the similarity between the two. Objects
are shown as a rectangle with a name
compartment at the top, and an optional
attribute list below it. Operations are not
usually shown in objects, since they are
defined in the class.

The name compartment holds the name of
the object in the form:

object-name : class

The class is optional, as is the object name
(although not both!). A nameless object is
used to denote anonymous objects, which
can be used to demonstrate the role of an
object without specifying any particular
instance. In the attribute list, the types of
attributes are often omitted, since these are
set in stone in the class element and so do
not need to be listed again. Instead, values
for the attribute can be shown (see the top
example in the figure), or a series of values
can be given to show how the attribute
changes over the course of some process.

Links

Associations exist between classes, and links
exist between objects. Links tend to omit
some of the information that the
corresponding association would show, in
the same way that objects omit some of the
details shown in classes. An association
name can be shown next to the link, and if
so, it is underlined to show that the link is an
instance of that association. Role names can
also be added, but multiplicity is often not
necessary.

Static methods and members

Last time I described the visibility marker
for class-operations and class-attributes (i.e.

 Overload – Issue 23 – December 1997

 Page 7

static methods and members in C++), as
opposed to object or instance ones, although
I am not quite sure why! The more usual
way to show a class operation or attribute is
to underline it. This is another case of the
type-instance pairing in the UML. A static
class method or static member variable can
be thought of as class-wide and hence exist
as instances per class rather than per object.
They are, in a sense, already instantiated, and
can be called or used without any
appropriate objects being available.

Design Patterns

To describe the workings of a particular
design pattern, the classes (and objects)
involved in the pattern are described and
their interactions are defined. A static
structure diagram, as introduced in the last
article, fits the bill exactly, because all
inheritance and composition information can
be documented, along with associations and
any required operations and attributes of the
collaborating entities. It is probably time to
look at a few examples.

The Prototype pattern [2] is basically a
pattern that enables the easy creation of
objects by a client without it needing to
know what the objects actually are in
advance. This is achieved by requiring all
classes of objects that it is to create derive
from a common abstract base class (ABC)
that it does know about. This ABC has a
virtual method called something like clone(),
which allows a new object to be cloned from
an existing one. All the client then needs to
do is take an existing object, call clone() on
it, and Hey Presto!, a new object is created,
no matter what derived class it belongs to.
The basic arrangement is shown in figure 2.

Prototype1

+ clone()

Prototype2

+ clone()

prototype

Client
Prototype

+ clone()

Figure 2 – The Prototype pattern

As can be seen from the figure, the client has
a reference (in the UML sense – it may well
be a pointer in the code) to an object derived
from Prototype. When it wants to create a
new one, it just calls the virtual clone()
method, which returns a pointer to the new
object. If, later on, a new derived class is
added, then the client can continue to create
objects of this class as long as it has one to
start off with. You could, for example, hold
a list of available objects somewhere that the
client can use as its initial objects to clone.

To use this pattern in a system, you would
replace the standard class roles shown above
with the classes in your system that
participate to use the pattern. An example
for this is shown in figure 3, and this may
help to explain the operation in a less
theoretical manner. Here we have a
GeneticEngineer class. Objects of this class
can then clone any Animal that happens to
walk by, even if they don’t know what they
are! (The recent fuss in the papers about
cloning Sheep was obviously overstated 8-).
Note the UML note that I have used to
annotate the GeneticEngineer class, showing
an idea of the implementation of the
createLife() method.

 Overload – Issue 23 – December 1997

 Page 8

Mammal

Sheep

+ clone()

Hedgehog

+ clone()

subject->clone()

subject

GeneticEngineer

+ createLife()

Animal

+ clone()

Figure 3 – The prototype pattern in use

Patterns as Collaborations

Typical system models contain many
interacting classes, and it is sometimes
useful to highlight the presence of a
particular pattern within the model. This can
be achieved using a dashed collaboration
ellipse, as shown in figure 4, which is
labelled with the name of the pattern.
Dashed lines link the classes (or objects) that
are involved in the collaboration to the
ellipse, and these lines are labelled with the
standard role names within the pattern. This
is a concise method of indicating the
presence of patterns within a model.

Prototype

GeneticEngineer Sheep

Client Prototype

Figure 4 – Using a collaboration symbol

Another pattern is documented in figure 5,
with the presence of an object using a third
pattern highlighted. The main section of the
diagram shows a set of classes co-operating
to form the Observer pattern. This pattern
enables objects to subscribe to a “service,” if
you like, provided by a Subject. The
Hedgehog class, which is derived from
Observer, can subscribe to the service
provided by SlugFarm, by calling its
attach() method. SlugFarm then adds
this Hedgehog to its list of observers.

Whenever something happens that
subscribers might want to know about, such
as the birth of a new Slug, it update()s all
of its observers. The updated information
can come from one of the observers as well.
If a Hedgehog eats one of the SlugFarm’s
slugs, it can notify() the SlugFarm,
which then update()s all of the other
Hedgehogs.

The other pattern shown in the figure is the
Singleton pattern. The singleton object’s
required uniqueness is indicated by showing
that the Singleton pattern is in use. Only one
instance can therefore be created in the
lifetime of the system.

:MotherNature

Singleton

observer

0..*

Subject

attach()
detach()
notify()

0..*

Observer

update()0..* 0..*

subject HedgehogSlugFarm

Figure 5 – The Observer pattern and a
Singleton object.

Conclusion

Apart from some finer details, we have now
covered static structure diagrams, which can
contain classes and objects (class diagrams
and object diagrams are common terms for
static structure diagrams that contain
predominantly classes and objects
respectively). We have also covered briefly
the description of patterns in the UML. Next
time I plan to show how to document some
of the dynamic behaviour of systems.

 Overload – Issue 23 – December 1997

 Page 9

Richard Bundell
rpb@mail.ndirect.co.uk

References

[1] Blundell, R.P., An Introduction to the
UML, Overload 22 pp 7-10.

[2] Gamma, E., Helm, R., Johnson, R., and
Vlissides, J., Design Patterns – Elements of
Reusable Object-Oriented Software,
Addison-Wesley.

Candidates for inline
by Francis Glassborow

I was a little stunned by Alan Griffiths’
article titled ‘Premature Optimisation.’
Many programmers currently seriously
overuse the inline keyword. The cure to this
is not an almost draconian prohibition of its
use but a carefully considered list of places
where it should be used by default and a list
of places where it should be considered for a
release version. It is then entirely reasonable
to require programmers to sign-off on all
other uses.

I have discussed the issue of the extra
compile time overhead for the extra function
names with several implementors. For what
it is worth their unanimous opinion is that if
it matters there are problems with your
coding technique because your translation
units are getting too big. They point out that
the name of an inline function never escapes
a translation unit unless it is not actually
inlined (its address is taken or the compiler
rejects your hint).

On the other hand there are places where the
decision to inline should be seriously
questioned if you have an inferior linker.
For example a function that includes a local
static can seriously add to the complexity of
link time operations. More about this later.

I completely agree with Alan that stability of
header files is important. A decision to
change a low-level header file should be
treated with grave suspicion because there
will be a massive one time cost for doing so.
Those developing large projects should
consider having a few fixed dates each year
when any desirable changes are implemented
across the board so that you pay the price
once for all the changes that are made.

The process of development of higher level
components should be isolated from the
development of a complete application.
There are well known mechanisms for doing
this such as the so-called 'Cheshire Cat'
handle class. One interesting feature of this
technique is that you can quickly recover
efficiency for a release version by converting
most of the handle's interface to inline
forwarding functions for building the release
version. The decision to do this should
depend on whether the added performance is
worth having (the answer in most cases is "It
isn't")

Now let me look at candidates for my list of
when to inline.

Candidates for Inlining Qualification

Accessors

Consider:
class X {
 int i;
public:
 int get() { return i;}
 void put(int newValue) {i = newValue;}
};

Any change to this class would, of course,
cause recompilation of all translation units
that include it directly or indirectly.
However it would be rare to change the
access functions unless the data was itself
changed. I know that hypothetically we can
change the access functions but such isolated
change is extremely rare and almost certainly
signifies a conceptual change to the public
interface even if the actual function
declarations have been left alone.

 Overload – Issue 23 – December 1997

 Page 10

Contrast this case with (a classical style
class):
class Y {
 char * mystr;
public:
 // suitable constructors & destructor
 char const * get() { return mystr; }
 void put(char const *);
};

The get() function's implementation is again
the only reasonable way to provide read
access and so the burden of justifying not-
inlining it lies with the opposition. On the
other hand any reasonable implementation of
the put() function is going to be more than a
single statement so any suggestion that it
should be inlined should be treated with
grave suspicion. However if you change the
implementation to:
class newY {
 string mystr;
public:
 // suitable constructors & destructor
 char const * get()
 { return mystr.c_str(); }
};

You might revisit the decision, as I have,
because we now have a simple call to a
member function of string. The time to
make the change is when you change the
type of the data member, which will force
recompilation anyway. At the same time
you might wish to augment the interface
with a function that returns a string const &.
Note that such a decision starts to lock down
your implementation in a way that return by
value does not because the reference requires
an object to bind to that has some continued
existence. I do not remember seeing
comments about this problem in any of the
books that I have read. Perhaps it is worth
some thought. One thought in passing is
that a const & can bind to a temporary so it
would seem that:
string const & wrong(){
 string x = "abc";
 return x;
}

generates a hanging reference because the
return value is bound to x that is destroyed
on exit from wrong() while:

string const & right(){
 return "abc";
}

should work as the return is bound to a
temporary that is only destroyed when the
reference is destroyed.

I would not want to write code that relied on
such a tenuous distinction.

Forwarding Functions

There are numerous cases where you wish to
transfer the provision of functionality to
another function. In each case the
forwarding function does not do anything so
the only conceivable late change would be to
replace the forwarding mechanism with a
direct provision of functionality.
Realistically such a change only happens
because a change somewhere else invalidates
the forwarding action. Such changes are
very rare and almost always result in
substantial changes that cause general
recompilation of dependant code.

A simple example to help you understand
what I am writing about:
class Degree {
 double angle;
public:
 explicit Degree(double a = 0) :
 angle(a) {}
 // all the other defaults do the right
 // thing provide complete set of
 // arithmetic operators. For example:
 Degrees & operator +=(Degree);
 Degrees & operator *=(double);
};

Note that it would be wrong to provide an
operator double because that would allow
you to multiply Degree by Degree, which is
conceptually wrong. The significance of the
use of explicit is that it prevents you adding
any built-in arithmetic type to a Degree
without making it explicit via a cast.

Now consider how we provide the normal
operators
Degree operator+(
 Degree lhs, Degree const & rhs)
 {return lhs.operator +=(rhs);}

 Overload – Issue 23 – December 1997

 Page 11

Degree operator*(
 Degree lhs, double rhs)
 {return lhs.operator+=(rhs);}
Degree operator*(
 double lhs, Degree rhs)
 {return rhs.operator+=(lhs);}

(Yes, I have already read the Harpist's
article)

Now I think those three global functions (I
would put them in a namespace if I was
doing the job properly) should be inline
definitions because I cannot imagine how
that would be wrong. All they do is to
forward the data to the function that does the
real work. Indeed I have ensured that the
compiler can see all it needs to manage the
pass by const & without flushing cache's etc.
Indeed if my manager instructed me that
these were not to be inline I would start
questioning his/her understanding of coding.
(Now Alan can flame me for that
provocative comment).

Of course you need to check that your
forwarding function really does no more than
forward to another function. I do not count
evaluation of parameters because that has to
be done whether or not you inline the
function. Actually that is another place that
the compiler may be able to provide extra
optimisation.

Resolution of Overload Ambiguity

This is a special case of forwarding
functions. The problem is how to deal with a
case where your compiler claims that it can
resolve a call to an overloaded function
because of ambiguity. The classic solution
from the programmer is to use a cast to force
the correct selection. There are two
problems with this. The first is that the
programmer has to determine which is the
correct choice. That may mean quite a
detailed study of the actual component in
order to reach a correct conclusion.

The second problem is that you have to litter
your code with casts and thereby hide the
ones that matter. A fundamental property of

quality C++ code is the concept of locality.
You should only do something once, and if
you ever wish to change your mind it should
require a single change to your code.

As the Harpist discovered the following code
fragment meets a problem:
void fn(long);
void fn(double);
int main(){
 fn(1); //ambiguity error
}

This may seem surprising. I would find it all
the more surprising to see a cast in such a
case. Every time you write superficial casts
you lessen the significance of the vital ones.
The correct way to resolve this ambiguity is
to add another function to the overload set.
In this case you would normally add:
inline void fn(int i)
{fn(long(i));}

I would need a whole lot of persuasion to
remove that inline qualification. By the way,
when compilers catch up with the recent
decisions in standardising C++ you will be
able to write:
inline void fn(int i)
{return fn(long(i));}

In other words the same form will work for
all pure forwarding functions instead of
having a different form for those that have a
void return.

Does It Matter?

At application level the use of inline is
probably an irrelevance as you are using
high-level components. However if the
designers of low-level components get it
wrong you can be hit quite hard. One
implementor I was talking with recently
quoted me a performance gain of about 20%
between code that never used inline and that
which used it as outlined above. Changing
low-level decisions does exactly what Alan
dreads, forces large scale recompilation.

There is one special case that is worth
consideration and that is the C++ idiom for

 Overload – Issue 23 – December 1997

 Page 12

providing static data (i.e. what some of you
call global data). There are all kinds of
problems surrounding such data in multiple
translation units and its possible use before it
has been initialised (during the program
start-up). The idiom that side-steps this
problem is to replace myType globalT; with:
myType & globalT()
{ static myType t; return t; }

Some programmers feel this is a good
candidate for an inline function. I will not
argue strongly either way on this. I can see
good and bad points on both sides. Now that
inline functions have extern linkage in C++
making such functions inline will work. As
you are unlikely to be changing these very
often in your code I see little risk of the
decision to inline them generating lengthy
recompilations. On the other hand the
existence of a local static in an extern inline
function might adversely affect the
performance of more primitive linkers.

And that leads me to one final point. Alan
grumbled about the template inclusion
model. The reason for that is that current
compiler technology results in quite
unacceptable build times if separate template
compilation is attempted. Almost all the
implementors eighteen months ago stated
that they could provide what Alan wants but
the performance would be so bad that the
only people who would ever use it would be
those applying conformance tests. The
remainder were not even willing to consider
it.

So over to you. If you disagree I will need
some hard evidence (real code written to the
above specifications) not just mere
speculation and hand waving. Otherwise I
think it would be useful to consider what
should be in my list of 'always inline' and
what should be in my list of 'consider inline
for release versions.'

Francis Glassborow
Francis@robinton.demon.co.uk

The Draft International C++ Standard

The Casting Vote
by Francis Glassborow

Sean Corfield normally writes our reports of
goings on at WG21/X3J16 meetings but as
he was unable to attend the recent meeting in
Morristown it falls to me to try to substitute
for him. Fortunately this was not a meeting
at which much technical work was done.

The main order of business was to resolve all
the comments made on the National Body
(NB) votes to promote Committee Draft 2
(CD2) to a Final Draft International
Standard. Initially we had had five negative
votes including the UK’s. One of these was
trivial to resolve. Martin O’Riordan had
recommended that Ireland vote ‘yes’ with a
single comment on the possibility of
providing static versions of operator new
and operator delete. His NB has a

policy that comments only accompany
negative votes so Ireland had voted ‘no’ with
a single comment. Ireland’s comment was
discussed in some detail at Core 1 but we
already knew that whatever the outcome
Martin would be recommending that Ireland
change its ‘no’ to ‘yes’. In the event we
decided that on technical grounds to leave
the current constraint in place.

Australia had already signified that it was
probably satisfied and as long as we did not
make some drastic change to meet the
requirements of another NB they would
change their vote to ‘yes.’ I cannot
remember who the third ‘no’ was from (I
think it was Japan and they sent a message
saying they were satisfied) and if I stop to
find out this will not reach your editor in
time. The other two were the UK who had
declared that the version of auto_ptr() in
CD2 was too dangerous for us to accept.

mailto:Francis@robinton.demon.co.uk

 Overload – Issue 23 – December 1997

 Page 13

(You will find an article on this elsewhere in
this issue).

Intensive email discussion had largely
convinced others that we had a serious point
and were not just being perverse. Many
hours of technical deliberation (largely
electronic) had resulted in what looked like a
technical solution as a result of the insights
of Greg Colvin and Bill Gibbons. Their
proposed solution was presented at a
technical session on Monday evening. It
won the day with only a handful of negative
votes (a great improvement from London
where the Library Group had been about
evenly divided on the then proposed
solutions). By the time it came to a vote the
next day there was only one negative vote
(based on a belief that a small part of the
solution would not work) and the WG21
votes were unanimous on the issue. We also
added a non-normative note to emphasise
what auto_ptr() was designed to do in
the hope that this would further limit its
abuse.

That changed the UK’s vote to ‘yes.’

Meantime a lot of small details were being
cleaned up in response to NB comments.
One silly constraint was removed – that
which restricted the function used by
for_each() to a non-mutating function.
We could not see why this constraint had
been included originally and we could not
imagine an implementation that would need
such a constraint. Our best guess was that
the original intent was to prevent changing
the container rather than the contents.

Some final work was done on the formal
grammar and some work was done on the
use of typename.

Almost everything was at this level,
important but not controversial. There were
lots of things that we would like to have
done and there were a number of things that
would have been done had it been 1995
rather than 1997.

The final controversy concerned a late
comment from France. France had
effectively been non-participants for several
years but recently returned to active
membership of WG21. When they voted on
CD2 they stated that they had not had time to
complete their understanding of template
issues (join the merry band) and would
comment in detail next time. Tom Plum,
WG21 convenor drew their attention to the
fact that they had been voting on a final CD
and therefore there would be no next time for
comments if the ballot was resolved in the
affirmative. They asked us to consider late
comments. In the interests of increasing
international consensus we agreed.

Their major point concerned the point of
instantiation of a template. Currently the
requirement is not earlier than the point of
use and not later than the end of the
translation unit (I know that this is a loose
paraphrase and experts would want to cross
some ‘t’s). If it makes a difference the
program is ill-formed. France’s problem
with that is they would like to be able to use
declared, but not yet defined, classes (what C
calls incomplete types) in templates as long
as the class is defined (completed) before the
end of the translation unit (source code file).
For that reason they wanted the point of
instantiation to be strictly defined as the end
of the translation unit.

This seems reasonable as it would only
appear to make technically ill-defined code
well-defined. Unfortunately it touches on a
very sensitive area where we had lent over
backwards to provide the maximum of
freedom to compiler implementors
(resolving conflict between separate
compilation and the inclusion model). We
had a technical session on Tuesday night (the
final draft had to be ready for proofing by
mid-day Thursday) and after almost two
hours we still lacked consensus. The crunch
issue was that even if all present were
convinced of the merits of the change, we
could not feel certain that absentees would
agree. What was making things worse was
that the only French representative was a

 Overload – Issue 23 – December 1997

 Page 14

comparatively young man who seemed to
struggle with both English and the obscurer
technical issues of C++ (to be fair, I would
hate to discuss Java issues in French). The
UK finally cut the knot by advising Tom
Plum that the proposed change would
endanger the UK ‘yes’ vote. In other words
meeting France’s requirement would not
lead to greater consensus. Transatlantic
phone calls (that five hour difference is
awkward when you need to talk to a specific
national expert on a technical issue) suggest
that France may change their vote to ‘yes’
anyway.

On Thursday evening we attended an
enjoyable reception put on by our official
hosts (AT&T) with Andy Koenig and his
friends entertaining us with a variety of
recorder music spanning the centuries. That
Andy was there effectively signified that the
draft was complete and ready to be voted out
as a FDIS. Late that evening Josée Lajoie
(for once not head of the Canadian
delegation) declared loudly ‘Hey, We’re
done.’ The printed word cannot possibly
represent the mixture of surprise and delight
that she managed to inject into that
declaration.

Friday morning was just the formal voting
and administrative closure. When we got
bogged down on discussing future
arrangements Mrs Plauger (Bill’s wife)
loudly advocated that we take a vacation.
That seems excellent advice, as barring some
completely unforeseeable catastrophe we
have a C++ standard (ISO rules only allow
the correction of blatant typos at this stage.
Anything that could conceivably change the
meaning is forbidden)

In March we will have to get down to the
vitally important matters of planning for
future meetings. Once we have a full IS we
will need to maintain it by responding to
defect reports and requests for clarification.
We also need to start work on things such as
Garbage Collection. We need to gain guided
experience of such things so that there will
be understanding based on experience by the

time we start consideration of the next
release of C++ (rest assured that work on
the next release does not even start for
almost six years)

Future Participation

As we move from the arcane discussion of
how to specify the extremes of the language
to the resolution of questions about C++ we
reach a stage where far more people should
involve themselves with national committees
(or panels as BSI calls them). This is the
best place to deepen your understanding and
meet people who are likely to be able to
clarify some of the murky issues.

The focus now changes from ‘Should we do
this or that?’ to ‘What exactly does this
mean?’ The best people to answer such
questions are those who were involved in
writing the text. It is time for the expert
practitioner to join in. And one view of an
expert is a person who understands how
much more there is to learn.

UK members of ACCU who have paid their
ISDF supplement and want access to
standardisation documents should contact
Neil Martin who will make appropriate
arrangements. You should remember that
access is for the purposes of standardisation
and not so that you can give free copies of
copyright materials to your friends.

Conclusion

I guess that there will be lots of
commentators explaining how we could have
done our work better. There will also be
many people highlighting our mistakes. In
such a massive undertaking there are bound
to be some errors. However I think we have
done an excellent job and I am proud to have
been a participant. If you focus on using the
language at an appropriate level of
abstraction you will find that it works very
well. Language lawyers have to focus on
corner cases, but the ordinary user should
keep away from the edges. As one
committee member put it to me, there is a

 Overload – Issue 23 – December 1997

 Page 15

difference between a fence and a cliff edge,
both are boundaries but exploring them by
taking one extra experimental step has rather
different consequences.

What the ordinary programmer now needs to
do is to learn good coding habits based on a
language that should remain stable for most
of a decade. It may be a little time before all
the compilers catch up but they now have a
finishing line to cross.

Authors who want to write good books with
extended shelf lives can now spend time
getting the text right. Of course most won’t
as we have seen from the terrible quality of
many books on C.

A more serious problem for the standards
community is how we keep the team
together. Some companies are going to look
at a stable standard and question the benefits
of funding further participation. I have no
doubt that there are massive hidden benefits
to continued participation. Not least of these
is keeping your top experts happy. True
experts need the chance to meet and to share
with others, some of whom will have even
more expertise.

Francis Glassborow
francis@robinton.demon.co.uk

The Story of auto_ptr
A Cautionary Tale

by Francis Glassborow

One consequence of the introduction of
exception handling into C++ was the need to
ensure that dynamically allocated resources
were de-allocated if an exception was thrown
through them. The most appropriate
mechanism is encapsulating resource
allocation in a class whose destructor
releases them. For example:
class PortHandle {
 Port * handle;
public:
 PortHandle(): handle(0) {}
 // other constructors
 void grab(Port);
 void release();

 ~PortHandle(){release();}
 // other functionality including
 // assignment
};

This is just a skeleton to help you grasp the
idea. At any stage handle either contains the
address of a Port object (providing all the
functionality for handling a port) or it is the
null pointer. Anytime a PortHandle goes
out of scope either through normal flow or
because of an exception the port will be
released. In other words the dynamic
acquisition of a port resource will be
exception safe.

One problem with this is that we naturally
handle dynamic resources with pointers.
Ideally we should continue to use variables
with the syntax of pointers but with
augmented semantics. C++ provides us with
the mechanism for creating such auxiliary
types. They are called smart pointers and the
template mechanism allows us to create
generic smart pointers that can instantiated to
contain any type of raw pointer.

Let me narrow the focus to dynamic memory
management. Fundamentally there are two
cases where we wish to use dynamic
memory for objects, polymorphic single
objects and arrays of homogenous objects.
Note that arrays of polymorphic type do not
work unless all variations of the type have
identical size and layout.

Dynamic Arrays

The use of pointers to handle dynamic arrays
is a pure artefact of C’s syntax/semantics.
Indeed it is one of the causes of serious
problems to programmers. It may have
seemed elegant to K&R but I think that it is
better characterised as a hack. We have no
need to perpetuate this idiom in C++ (except
in exceptionally low-level, sub-basement,
component implementation). Unless severe
efficiency constraints dictate otherwise we
should be using an STL container for
collections of homogeneous objects. The
obvious first candidate is vector<T>,

 Overload – Issue 23 – December 1997

 Page 16

which behaves as closely to a raw array as
desirable, but no closer.

It is the task of such components as STL
containers (or user written versions that
follow similar design criteria) to encapsulate
new[] and delete[]. I would view any
user level code that contained either of these
with the gravest suspicion.

Polymorphic Singletons

Clearly there is no need to use dynamic
allocation for objects whose exact type is
known at compile time. You may be
tempted to question that on the basis that you
use a dynamic idiom to allocate large objects
on the heap instead of having them consume
precious stack space. The appropriate idiom
for such is to use a handle or surrogate class.
In other words you encapsulate the dynamic
allocation in a class that outwardly behaves
exactly like the real object. If you do not
know how to do this go and find out how to
use the ‘Cheshire Cat’ idiom.

Experienced class designers of polymorphic
types manage polymorphism types through
polymorphic objects that are provided by
proxy or surrogate classes. However this is
not always desirable, and we also have to
cope with instances where the components
we want to use are insufficiently finished. In
addition there are many times that class
designers need to handle dynamic objects
precisely to remove that burden from the
application programmer.

What we need is a smart pointer that will
manage memory for any and all plain
objects. The UK placed provision of such as
a requirement on the Library some time prior
to the release of CD1. At the same time we
were aware that there were several aspects to
the problem.

Let me look at them.

If we just want to create a dynamic object for
current use that must be destroyed before we
exit from the current block (return from

function) then we do not even need a smart
pointer. The following would seem to meet
all our needs:
template <typename T> class Holder{
 T * handle;
 // remove copy semantics
 Holder & operator = (Holder const &);
 Holder(Holder const &);
public:
 Holder(T * tptr = 0): handle(tptr){}
 ~Holder() throw(){delete handle;}
 // allow capture of a raw pointer
 void operator = (T * tptr)
 {delete handle, handle=tptr;}
};

Of course you will need to be very careful
about uses of the raw pointer. Indeed I
might replace that last function with:
void operator = (T * tptr) throw(inUse)
{
 if (handle) throw inUse();
 handle=ptr;
}

So that a Holder object was never
reassigned. This kind of design decision is a
balancing act and it takes time and
experience to get it right.

The problem with Holder is that it does not
meet the requirements of those that want to
return a dynamically created object from
some form of factory function. It would
have met the UK’s original requirement but
those working on the issue decided that
whatever solution was provided the problem
of exception safe return of a dynamic object
had to be catered for.

There is an entirely different idiom that
meets this need and that is the use of a
counted pointer. Unfortunately there are at
least two problems with that. The idiom can
either be implemented with a non-invasive
(does not require the support of the object
being pointed to) technique or by an efficient
invasive one (only works for types that have
been designed for use with a counted
pointer). Though a couple of experts think
they now have better methods of
implementing non-invasive counted pointers
at the time of CD1 most believed that the

 Overload – Issue 23 – December 1997

 Page 17

non-invasive technique carried too much
overhead to be acceptable.

The second problem is that counted pointers
allow programmers to create closed cycles
that can only be destroyed by direct
programmer intervention (or by some
Garbage Collection techniques). That is
unacceptable when the basic motive is to
ensure correct resource release when an
exception is thrown. For that reason work
on providing a counted pointer in the
standard C++ Library was suspended – we
were trying to ship a standard☺

The alternative was to design some form of
smart pointer that enabled ownership to be
transferred. This is problematical because
transfer of ownership means that the object
being copied (either by cloning or by
assignment) is changed by the process. The
standard copy semantics is what is called
‘const copy semantics’ – the process of
copying does not change the original.

CD1 provided an auto_ptr that basically
used simple reference (rather than const
qualified) parameters for the copy functions
(made a little more complicated by the need
to support copying between auto_ptrs to
derived and base classes, but let us keep
focused on the basics). This meant that if
you const qualified an instance of an
auto_ptr either directly or through use of
a const & parameter the instance could
not be copied and so would not loose
ownership. Because it could not loose
ownership, the raw pointer it was
encapsulating was safe from destruction
elsewhere.

The horror scenario of create an auto_ptr
to hold the address of a dynamic object, pass
it by const & to a function, copy the
const & to a local variable, forget to return
ownership to the parameter before exit was
not possible. The horror is that were such a
chain of action not prevented, exit from a
local block would destroy the object and

create a hanging pointer in the original
auto_ptr object.

Unfortunately it was then discovered that
plain (unqualified) copy semantics failed to
meet the design criteria. The reason is
instructive. Consider:
auto_ptr<PT> & factory ();

That is useless because the returned
reference is inevitably going to be a hanging
one (the local version is in the process of
being destroyed as it goes out of scope). So
we have:
auto_ptr<PT> factory();

That is we return by value. The ownership
of the pointer to the newly created PT object
is passed to the return value before the local
instance is destroyed. So far, so good. But
how are we going to capture the return
value? Unfortunately the return value is
exactly that, a value. The rules specify that
you can only bind a value to a const &. In
this case the two options that might be used
to capture the value (that means copying)
have unqualified reference parameters. In
simple terms they will not work to copy a
value but only to copy an unqualified object
or reference. The reason that it took some
time for the designers to recognise this flaw
is that most compilers circa 1995 did not
enforce that constraint (many still do not).

What we need is a conversion operator to
technically converts a value (so called rvalue
for language experts) to an object (lvalue).
The language allows you to write such an
operator and then specifies that it will never
be called. It is probable that this was an
over-constraint because at the time of writing
those involved could not imagine why you
might want such an operator. The easy rule
is to let the programmer write it (as the rule
includes conversions to base classes, it
would be a nightmare to detect declarations)
but specify that it shall never be called
(because it was believed that compilers
would never look for it as it would already
have a conversion, there were also some

 Overload – Issue 23 – December 1997

 Page 18

technical problems that would surface in
some circumstances)

By the time this problem was fully
appreciated it was deemed too late to revisit
the issue in the core of the language. It then
became a judgement call as to what was the
least bad solution to making auto_ptr
meet its design requirements. In the event it
was decided to return full const copy
semantics with transfer of ownership to
auto_ptr<>. Initially only the UK
viewed that as being unacceptable.

From our viewpoint the side-affects were
worse than the disease. First programmers
would find that passing by const & did not
protect their auto_ptrs from loss of
ownership. That is pretty bad and would
require rather more education of C++ users
than we could expect.

What was worse is that it led programmers to
use collections of auto_ptr. We even had
one world class expert express the belief that
this could be done safely. I think it was
Andy Koenig who pointed out that efficient
implementation of some STL algorithms
would lead to invalidated auto_ptrs in
collections. I think this was the final blow
that focused a good deal of high-power
intellect on solving the problem. We knew
that a simple change to the core language
would fix the problem and allow the CD1
version to work but at this late stage we did
not have the time to explore the potential
side-effects of any such change. Experience
had taught us at least one thing, apparently
simple changes can have unexpected results.
What we needed was a pure coding solution.
Finally after much refinement Bill Gibbons
tied down what will either become known as
the Gibbons idiom or the Gibbons error. Let
me avoid the complexities of templates (and
believe me they add quite a bit to the
analysis of this idiom)
class T {
 struct Tref {
 T const & tref;
 Tref(T t):tref(t){}
 };
 // whatever else T needs

public:
 // normal T members
 // now provide non-const copying
 T (T &);
 T & operator=(T &);
 // and a special conversion operator
 operator Tref()const;
 // and copying Tref’s
 T(Tref const &);
 T & operator(Tref const &);
};

That private struct is the key. Its
constructor is allowed to bind a value to the
T const & that is its data member. Some
magic (casts) are needed in implementing the
last two functions but they must work
because a Tref will only be constructed
from a value. T const & objects can be
handled directly with the non-const copy
functions and so Tref will not be
constructed with a value from a plain
reference. The lack of a constructor from a
T const & ensures that a Tref cannot be
constructed from copying a T const &.
In other words any Tref object must
actually bind its data to an rvalue of type T.

I think everyone agrees that this must work
and any compiler that does not manage this
is bugged. Where it gets more difficult is
where we have a template class that uses a
member template to manage relationships
between the template parameter and
bases/derived types of the template
parameter. All compilers tested failed to
manage that case and failed in different
ways. In every case the implementors
declared that the failure was a bug.

Study of the development of auto_ptr
reveals quite a lot about C++. Those of us
who blazed the trail learnt quite a bit more.
For example qualifying a copy constructor
with explicit means you cannot pass
such a type by value though you can create a
local copy. One day I will find a use for that
little gem.

 Overload – Issue 23 – December 1997

 Page 19

Warnings

I am writing this article against a deadline (I
am already a day past the copydate) and lack
the time to check all the fine detail so there is
likely to be more than one error but I hope
that you find it interesting and useful.

One vital thing to grasp is that
auto_ptr<> is intended to handle a very
limited class of problems. It does not work
in STL containers. Even if you manage to
find some contortion that continues to allow
you to create such containers they will fail at
some time. Hopefully this latest version
(unlike the CD2 version) will fail at compile
time.

If you need a container of polymorphic
objects you will need to implement your own
smart pointer (probably a version of counted
pointer) if the designer of the polymorphic
hierarchy has not provided some suitable
handle class. Used properly auto_ptr
can be extremely useful, the latest version is
harder to abuse but do not take that as a
challenge.

Example
class Cat {
 myType * smile;
public:
 Cat & operator= (Cat const &);

 // rest of class definition
};

Cat & Cat::operator=(Cat const & c)
{
 auto_ptr<myType>
 temp(new myType(*c.smile));
 delete smile;
 smile=temp.release();
 return *this;
}

Note that we do not need a try block for this
version of copy assignment to be exception
safe. It is true that ~myType() might
throw but in that case you have far more
serious problems; destructors should not
throw exceptions. The temp object protects
the copy of the right-hand side until it is
attached to the left-hand operand. Note that
this solution is apparently no more
complicated than the one you would write in
the absence of exception handling. The
belief that EH results in programmers having
to write much more code is mistaken. With
EH you have to learn to use your tools
correctly.

Francis Glassborow
francis@robinton.demon.co.uk

C++ Techniques

STL Vectors
by Sergey Ignatchenko

and Dmitry Ligum

The Standard Template Library (STL) is part
of the standard C++ library. The STL is
intended for the organization of data storage
(STL containers) and processing (STL
algorithms). Using the STL in programs with
complicated data structures saves
considerable development time, and makes
source code more readable and easier to
maintain. At the same time the STL is
efficient enough, and, if properly used,
causes minimal overhead.

To compile examples from this article you
must include the following fragment in your
program:
#include <vector.h> //or <vector>
#include <algo.h> //or <algorithm>
#include <iostream.h> //or <iostream>
// If the STL is separated into
// a the “std” namespace.
using namespace std;

Containers

One of the key concepts of the STL is the
container. A container is a data structure,
intended for storage and manipulation with
objects of some other type (for example a

 Overload – Issue 23 – December 1997

 Page 20

linked list or tree). The C-style array is an
example of the simplest non-STL container.
Let’s consider vector as an example STL
container.

Vector’s behavior is very close to the
behavior of an ordinary C-style array. The
main difference being that vector is able
to increase its size as necessary. Let’s
consider an example of C-style array usage:
int init_array(int* a, int max_size)
{
 for(int n = 0; n < max_size; ++n)
 {
 int i;
 cin >> i;
 if(i == 0) break;
 a[n++] = i;
 }
 return n;
}

const int MAX_SIZE = 64;
int a[MAX_SIZE];
int n = init_array(a, MAX_SIZE);
for(int j=0; j < n ; ++j)
 cout << a[j] << endl;

In this example a user fills the array with
integers, then these integers are processed,
and finally they are printed. The example
contains a serious problem: it is unknown
how many integers the user will enter. This
leads to a large value of the MAX_SIZE
constant being selected, which in some cases
may result in extra memory usage. In
similar cases it is often better to use a vector.
void init_vector(vector< int >& a)
{
 for(;;)
 {
 int i;
 cin >> i;
 if(i == 0) break;
 a.push_back(i);
 }
}

vector< int > a;
init_vector(a);
for(int j=0; j < a.size() ; ++j)
 cout << a[j] << endl;

It should be mentioned, that operator []
(getting element by its index) is a specific
feature of the vector container. Other
STL containers may not have this feature.

Iterator

Every STL container has its own type of
iterator. An iterator is an object, which is
used for enumerating the elements of the
container. The iterator for C-style arrays is
an ordinary pointer. Let’s compare usage of
pointers and iterators for enumerating the
elements of a container ‘a’:
int a[MAX_SIZE];
int n = init_array(a, MAX_SIZE);
int* pEnd = a + n;
for(int* p = a; p < pEnd; ++p)
 *p = rand();
for(const int* cp= a; cp < pEnd; ++cp)
 cout << *cp << endl;

The equivalent vector example being:
vector< int > a;
init_vector(a);
for(vector<int>::iterator p =
a.begin(); p < a.end() ; ++p)
 *p = rand();
for(vector<int>::const_iterator cp =
a.begin(); cp < a.end() ; ++cp)
 cout << *p << endl;

In most cases an iterator can be considered
as a pointer to a container element, with one
exception: for most iterators operator->
is not defined, and the construction
(*p).f() should be used instead of p-
>f().

For every STL container the member
function begin() returns an iterator pointing
to the first element of the container, and
member function end() returns an iterator
pointing one past the last element in the
container. Iterator returned by function
end() always points to a non-existent element
of the container. If the container ‘c’ is
empty, then c.begin()==c.end().

It should be mentioned that iterators pointing
to an element of the container might become
invalid after some modifications (see list of
literature). In the case of vector, this can
happen as a result of almost any insert or
erase:
vector< int > a;
a.push_back(123);
vector< int >::iterator iter= a.begin();
int i1 = *iter; //OK

 Overload – Issue 23 – December 1997

 Page 21

a.push_back(456);
int i2 = *iter; //potential error

To avoid such potential errors, it is possible
to use indexes instead of iterators.

Vector Modification

To insert an element into a vector the
member function insert(iterator pos, const
T&x) can be used. The element is inserted at
a position which is pointed to by the pos
parameter, and all following elements of the
vector are moved towards the end of the
vector. Thus, v.insert (v.begin(), e) inserts
an element e at the beginning, and v.insert(
v,end(), e) inserts it at the end. The above
mentioned construction v.push_back(e) can
be considered an inline version of v.insert(
v.end(), e).

The function erase(iterator pos) deletes an
element at position pos, and all following
elements of the vector are moved towards
the beginning of the vector. It is alo possible
to use the erase(iterator first, iterator last)
member function to delete a range of
elements of the vector. In this case all
elements, from *first to *(last-1) will be
deleted. To erase all elements of the vector
v.erase(v.begin(), v.end()), or v.clear()
could be written. Function pop_back()
erases the last element of the vector, and this
is an inline version of v.erase(v.end() - 1),
but not of v.erase(v.end()).

In practice it is often necessary to insert or
erase elements by its index within the
container. This can be achieved by applying
pointer arithmetic to vector iterators (this
feature is specific to vector). Thus, to insert
an element at the third position could be
written as v.insert(v.begin() + 3, e).

Vector Range Check

The STL standard does not stipulate any
control over correctness of indexes and
iterators during use of vector. It means that
an attempt to use a non-existing element may
cause any result, including program crash.

Thus, similarly to use of C-style array,
programmer is fully responsible for correct
use of vector.

The only exception is member function at().
This function is similar to operator [], but if
the index is invalid, it throws an
out_of_range exception. The authors
suggest that use of function at() instead of
operator [] in most cases is unsuitable: range
checking is usually needed only for
debugging, while the overhead caused by
extra checking code will remain in release
version.

Complex Objects In Containers

To be a vector element, type X must satisfy
some requirements. These requirements are
met automatically if type X is one of the
following: A C numerical type (int, char,
double etc.) or a standard C++ library class
string, or any of the STL containers. If X is a
custom class, the programmer must ensure
that class X has:

default constructor X()
generated automatically, if all data
members of class X have default
constructors, and class X has no
constructors

copy constructor X(const X&)
generated automatically, if all data
members of class X have copy
constructors

assignment operator operator=(const X&)
generated automatically, if all data
members of class X have assignment
operators

Following code shows a problem that often
arises in practice:
struct X
{
 int i;
 double d;
 string s;
 vector< int > v;
 X(int ii, double dd);
};

 Overload – Issue 23 – December 1997

 Page 22

vector< X > vx; // Compile-time error

Here class X already has a constructor, which
is why the compiler will not generate a
default constructor. To correct the error,
default constructor X() {} should be added to
class X.

In the case of storing complex objects in
containers, consideration of the object “life-
time” is essential. There is strict rule: the
container element “life-time” can not exceed
the container “life-time”, i.e. container
destructor calls destructors of all its
elements. Obviously, element destructor is
also called if the element is deleted by erase
functions.

Sorting and Searching

Let’s consider another STL concept:
algorithm. Algorithm is an operation over a
container. Algorithms are not bound to
particular containers. This “container
independence” is achieved by using iterators.
Among algorithms, applicable to vector (as
well as to C-style array), sort/search
algorithms are most often used in practice.

If a programmer wants to use the sort or
search algorithms, the contained object type
must provide a compare operation. For
trivial types, such as int, this is done
automatically, and for user-defined classes it
must be done explicitly as follows:
class Person
{
public:
 char FirstName[32];
 char LastName[32];

 bool operator <(const Person& p) const
 {
 return strcmp(LastName,p.LastName)<0;
 }
};

The STL sort and search algorithm family
consists of the following functions:

sort(iterator first, iterator last)
 sorts range from *first to *(last-1).

lower_bound(iterator first, iterator last,
const T& e)
carries out binary search at the
certain, previously sorted range in
container. If one or more elements
equal to e found, returns iterator,
pointing the first element found, else
returns position where the element e
can be inserted to preserve ordering.

upper_bound(iterator first, iterator last,
const T& e)
same as lower_bound, but if more
than one or more element equal to e
found, returns iterator, pointing one
past last element found.

binary_search(iterator first, iterator last,
const T& e)
carries out binary search at the
certain, previously sorted range in
container. Returns true, if at least one
element found. Rather seldom used in
practice.

Let’s consider an example of the sort and
search algorithm in use:

vector< Person > v;
init_person_vector(v); // fills vector with some data
sort(v.begin(), v.end());
for(;;)
{
 Person p;
 cin >> p.LastName;
 vector< Person >::iterator il = lower_bound(v.begin(), v.end(), p);
 vector< Person >::iterator iu = upper_bound(v.begin(), v.end(), p);
 for(vector< Person >::iterator i = il ; i < iu ; ++i)
 cout << (*i).FirstName << " " << (*i).LastName << endl;
}

 Overload – Issue 23 – December 1997

 Page 23

This vector of Person elements is sorted in
the order defined by Person::operator< (in
this particular case by LastName), and after
that all Persons possessing defined
LastName are searched.

It should be mentioned that the sort and
search algorithms could be used for C-style
arrays. For example, sort operation for a
array, containing n elements, looks like sort (
a, a + n).

Vector Implementation

The C++ standard does not specify, how this
or that container or algorithm shall be
implemented, it just limits properties of the
particular container/algorithm. Nevertheless,
data structures, used for implementation of
containers are usually the same. This is also
valid for vector.

Typical vector consists of two parts: header
and data. Vector header is stored where
object of type vector<T> was constructed: in
static memory, on stack or in dynamic
memory. Vector data is always stored in
dynamic memory. This gives possibility to
change vector data size dynamically.
Memory allocated for vector data is usually
larger than needed for vector elements.

When an element is inserted into a vector, it
is constructed in reserved memory, and if
reserved memory is already exhausted, the

vector data is reallocated. To manage
memory reservation (and reallocation
process) vector member functions capacity
and reserve are used. (See list of literature).

A typical vector iterator is implemented on
the basis of an element pointer. Resulting
from this, the following (and many other)
properties become obvious:

1. pointer arithmetic can be used with
vector iterators;

2. after reallocation all iterators, as well as
element pointers, become invalid.

Sergey Ignatchenko
ipsign@redline.ru

Dmitry Ligum
ligum@rtsnet.ru

Literature:

1. STL Programmers Guide, available at
www.sgi.com/Technology/STL

2. Bjarne Stroustrup “The C++
Programming Language” Third Edition.

3. David R. Musser, Atul Saini, “Stl
Tutorial & Reference Guide : C++
Programming With the Standard
Template Library”

Whiteboard

Rational Values Implementation
Part 2

by The Harpist

This time I want to look at a few issues that
arise when implementing operators.
Remember that my main motive in writing
this series is to explore various design issues
related to a pure value based class. As I only
have experience, coupled with some reading

and general intelligence, to guide me I have
no doubt that I will miss alternatives. All I
claim is that what I am providing is a basis
for discussion, as well as being better than
what I find in most books.

There are several issues that are specific to
implementing rationals. I consider these to
be of lesser importance, though I would be
delighted to discover algorithms that dealt
with such problems as large denominators.

mailto:ipsign@redline.ru

 Overload – Issue 23 – December 1997

 Page 24

Arithmetic Operators

Built in types have two sets of arithmetic
operators, those that modify their left-hand
operand (assignment and compound
assignment operators) and those that return a
temporary value by some mechanism. Our
uneducated instincts suggest that the latter
group is in some way more primitive than
the former. However many aspects (not
least, they only deal with two ‘objects’ while
the latter deal with three: the two operands
and the return value) of the former suggest
that we have to view them as the primitive
operators.

So that we have something to focus on let
me deal with multiplication. I hope that you
know that we start by providing a class scope
implementation of operator *=. In other
words we start by declaring and
implementing a function that has all the
access it needs to private data.

Multiplication

If you follow the textbooks you will write a
declaration something like:
Rational & operator *= (
 Rational const &);

That will certainly meet our requirements in
that it will provide a mechanism whereby the
left-hand operand will be modified by
multiplying it by the right-hand one. But we
should consider the probable needs of the
application programmer. Those using
specific implementations of rational numbers
are very likely to be working in areas of
computationally intensive programming.
These people value every potential gain in
computational time. They really care that we
program in a way that gives the compiler the
maximum opportunity for optimisation.
Note that I am not saying we should
optimise, merely that we should avoid
inhibiting it. We should also recognise that
speed is most likely to be the issue.

In that light examine the conventional choice
to pass the right-hand operand by const &.

Most writers argue that this is more efficient
than passing by value. In terms of passing
the operand that may well be the case.
However there are other issues that you
should be aware of. Passing by const &
severely inhibits the compiler because while
you may know that the passed object will not
change the compiler does not. All that a
const & parameter guarantees is that only
const member functions will be applied to
uses (direct or derived from) of that
parameter in the body of the code. The
compiler cannot assume that it has the only
mechanism for accessing the underlying
storage and so must be very careful of any
cached data.

One way that the problem can arise is in
multi-threaded code where more than one
thread has access to the object being passed
by const &. Another thread might attempt
to change the value while your operator
*= was using it. That would mean that you
would need to use a lock during the
execution of the operator.

That reminds me of another problem, the
compiler generated copy constructor and
assignment constructor do not provide
protection against what I believe is called
race conditions, in other words another
thread might change the value while it was
being copied. It would be useful if I could
tell the compiler to compile my library for
multithreading and as a result get automatic
locks during compiler generated copy
functions.

It seems to me that this area particularly
needs attention because I am not aware of
any way that I can provide a lock when using
a constructor-initialiser list. Perhaps this is
another place that needs to be addressed
when supporting multi-threaded code. My
gut reaction is that construction should
always behave as if it were an atomic
operation.

Perhaps some expert on this area of coding
could comment.

 Overload – Issue 23 – December 1997

 Page 25

 What I am getting at is that serious
consideration should be given to declaring:
Rational & operator *= (Rational);

In other words, pass by value. The compiler
provided copy semantics can be
implemented very efficiently and the result
would allow the compiler to apply many
other optimisations. The best I can say is
that it would certainly be worthwhile
benchmarking this alternative.

We should also consider providing some
overloads to this operator because several of
these can be implemented more efficiently.
For example if we wanted to multiply a
rational by an integer we would wish to
avoid the conversion of an integer to a
Rational. So we declare:
Rational & operator *= (long);

This works fine until we realise that it has
now broken code such as the following
fragment:
Rational r;
r *= 1.2;

The compiler is faced with selecting from
our set of overloaded functions and will
select the one taking a long because the
built-in conversion from double to long
is considered a better match than the user
defined conversion via the constructor that
takes a double as parameter. This means
that once we elect to provide an overload for
integer right-hand operands we must also
add one for floating point ones. So we add:
Rational & operator *= (double);

When I added this to my implementation and
tested it I got an unpleasant and unexpected
side effect. It handled all floating-point
right-hand operands correctly but issued
ambiguity errors when the right-hand
operand is an int. I have always felt that I
would like more calls of ambiguity but I
cannot feel that there should be ambiguity
between promotion from int to long as
opposed to conversion from int to

double. Is Borland correct in this? (Well
Visual C++ gives the same error. Francis).
So it seems we must now add:
Rational & operator *= (int);

This could (and possibly should) be provided
by inline forwarding:
Rational & operator *= (int i)
{ return (*this.operator *= (long(i)); }

I must confess that I had not realised that
providing overloads for double and long
created this problem. Even worse, when I
changed double to long double I
started to get ambiguity errors when the
right-hand operand was a double. I hope
this is just an implementation problem
because otherwise it makes writing
overloads for arithmetic types a nightmare.
In the above we have had to add overloads to
correct a wrong choice by the compiler (I am
not complaining because I think the reasons
are sane and acceptable) with the result that I
am getting silly ambiguity calls.
Conversions to higher capacity/precision
types must be better than inter-conversion
between integer and floating-point types.

Please note that the use of inline
definitions to provide correct overload
resolution must be correct. If you do this
from the start there is no chance that its
existence (of an inline definition) could
force large scale re-compilation of code at
some later stage. Only a decision to replace
the forwarding process by an alternative
process would cause this. However a late
decision to replace a normal definition with
an inline one would cause precisely what
we wish to avoid – massive rebuilding of a
substantial product. Despite Alan Griffiths’
comments in Overload 22, this kind of
design decision needs to be made early to
provide exactly the kind of stability he seeks.

Now you understand the issues concerning
how we should provide operator *= for
our Rational class let us move on to the
more commonly used multiplication
operation. But just before we do please note

 Overload – Issue 23 – December 1997

 Page 26

that the provision of compound assignment
operators such as *= is not just for
completeness, they are extremely valuable
when you want to manipulate larger scale
mathematical constructs such as matrices.

I am beginning to see more writers recognise
that the provision of compound assignment
operators means that they do not need to
abuse friendship to provide efficient
implementations of the plain arithmetic
operators. Remember that the problem here
is to assure that the use of a built-in
arithmetic type as the first operand will work
correctly in the context of a user-defined
second operand. For example, we not only
want <Rational> * <Rational> and
<Rational> * <int> but also <int>
* <Rational>. That means that we will
need at least one global declaration. The
textbook standard for such a function is
something like:
inline Rational operator *(
 Rational const& lhs,
 Rational const& rhs){
 Rational temp = lhs;
 return temp *= rhs;
}

I guess that the inlining is a little more
debatable in this case, however a good
compiler should be able to make it very
efficient and, I believe, in the context should
be given the latitude to do so. Inefficient
compilers might generate fatter code than a
simple function call but I would not want to
use such a compiler for numerical work.
Providing value types is normally a low-
level abstraction where the designer should
consider efficiency constraints as well as
ease of use. It is at this level that we should
be willing to write a lot so that we cover all
reasonable expectations.

The next decision that needs to be taken is
whether we should replace the const &
parameters with value ones. This decision
has been made more complicated by the
London decision of the C++ Standards
Committees that the compiler shall not have
the right to optimise away copy construction

required for a value parameter. However if
we stay with our decision to allow the
compiler to generate this constructor I
believe that it can still minimise the
overhead. I think that good compilers should
produce a pretty lean implementation of:
inline Rational operator * (
 Rational lhs, Rational rhs)
{ return lhs *= rhs; }

Writing this focused my attention on the
traditional idiom, which is clearly wrong. It
always was, but the London decision makes
it even more so. Regardless of any decision
about the second parameter the first one
clearly should be passed by value as the first
thing the traditional idiom does is to copy it.
So in cases where we are not concerned with
maximising the compilers freedom to
optimise we should write:
inline Rational operator * (
 Rational lhs, Rational const & rhs)
{ return lhs *= rhs; }

If we wish to provide the special case
optimisations (as we did for operator *=
) we will have to write two global functions
per case, one for each operand that might be
an operand that we wish to specialise. For
example if we want to handle multiplication
by an int we need:
inline Rational operator * (
 Rational lhs, int rhs)
{ return lhs *= (long)rhs; }

inline Rational operator * (
 long lhs, Rational rhs)
{ return rhs *= (long)lhs; }

The cast is to ensure a direct call to the
general case that we implemented in class.

I hope the above discussion of exactly which
prototypes should be considered proves
useful to you. I am sure your editor would
be happy to receive alternative views.

Implementation Considerations

I want to conclude by drawing your attention
to some low-level aspects of implementing
arithmetic operations for Rationals.

 Overload – Issue 23 – December 1997

 Page 27

One serious problem is that of keeping the
vales of the numerator and denominator
small. Even if we are using a BigInt type we
should recognise that large values will take
longer to manage than small ones. As we
always reduce our Rational numbers to a
canonical form where the numerator and
denominator are co-prime we have a couple
of possibilities to consider. For example:
Rational & Rational::operator *= (
 Rational r)
{
 // create temporaries with
 // denominators exchanged
 Rational t1(numerator, r.denominator);
 Rational t2(r.numerator, denominator);
 t1.simplify(), t2.simplify;
 // at this stage all common factors
 // have been eliminated
 numerator =
 t1.numerator * t2.numerator;
 denominator =
 t1.denominator * t2.denominator;
 // floating-point cache invalidated
 converted = false;
 return *this;
}

The effective need to create two temporary
Rationals just to call simplify suggest we
should revisit this aspect of the design. If
you are using the modern style where you
encapsulate a class and all its helpers into a
namespace then providing a utility function
to reduce two numbers by eliminating
common factors would be more efficient. At
the same time the typedef providing the
integer_type should also be moved out
to namespace scope. An alternative, more
traditional, approach would be to provide the
simplify functionality as a class
static function taking two parameters of
type integer_type. My personal
preference is to use namespaces as they
provide good encapsulation of the
functionality of a type (which, as here, is
often far more than just the class definition).

Implementing the specialisation for the right-
hand operand as a long reveals why this
specialisation is desirable:
Rational & Rational::operator *=(
 long rhs)
{
 // keep the current numerator
 integer_type temp = numerator;
 numerator = rhs;
 simplify();
 numerator *= temp;
 converted = false;
 return *this;
}

Note that this code assumes that
integer_type supports compound
assignments. It is because programmers
make such assumptions that designers of
high-capacity/precision arithmetic types
should provide a full range of arithmetic
operators. I have no doubt that failure to do
so is a serious design flaw.

Implementing the specialisations for
floating-point types (forced on us because of
the overloading rules) should probably by
forwarding to the standard form. You are
going to have to do most of the work to
convert the operand to a Rational and so
little would be gained by trying to avoid
completing the task. There is one other
option that you might consider, particularly
as this type may well be used in matrices.
That is to make these specialisations
private and thereby force the user to do
the conversion explicitly. This gains little in
single instances but could gain a lot when
doing matrix arithmetic on matrices of
Rationals.

Providing division operators for
Rationals is an interesting exercise in
using forwarding functions and
specialistaions. For example:

Rational & Rational::operator / (Rational r)
{
 if (r.numerator == 0) throw DivideByZero;
 Rational temp(r.denominator, r.numerator);
 converted = false;
 return (operator*=(temp));
}

Rational & Rational Rational::operator / (long rhs)

 Overload – Issue 23 – December 1997

 Page 28

{
 integer_type temp = denominator;
 denominator = rhs;
 simplify();
 denominator *= temp;
 converted = false;
 return *this;
}

The basic rule all the time is to delay
multiplication as long as possible because
that is the operation that is most likely to
cause overflow.

I think that about covers the ground. What
do you think?

Something Else

The design allows for some special values to
be held for those working in areas where
signed infinities and signed zeroes are
useful. It is trivial to allow signed zeroes
because the sign bit is being held
independently. More interesting is that using
a zero denominator can represent infinity
and the use of zero for both numerator
and denominator can represent and
indeterminate value. In some types of
mathematical work these features can be
useful. Very little extra work is required to
support them.

The Harpist

A Finite State Machine Design II
by Einar Nilsen-Nygaard

In the last article I’d got as far as presenting
the initial design and some class declarations
for a finite state machine (FSM) design. The
implementation is being done using the STL.

Recap

To recap the design, I’d ended up with two
classes and an interface:

• StateMachine - the main controlling class.

• State - a class encapsulating the value
associated with a state and any associated
actions.

• ActionInterface - an interface for
specifying actions to be carried out.

All three of the above are parameterised by
(note the facilities that these classes must
provide):

• StateValue - the class representing the
value of states. This class must provide
operator== and operator<.

• Stimulus - the class representing the type
used to trigger state transitions. This class
must provide operator== and operator<.

The aim of this design is to allow users of
the classes to pick them up and easily
assemble a FSM suitable to their needs, with
the only coding necessary being that related
to implementing actions and complex
StateValue and Stimulus classes.

Implementation

Last time I presented the interfaces to the
classes that came out of the design. Now I’ll
put down a first-cut implementation for these
classes. Let’s look at StateMachine first.

sm.cc

The constructor, which is used to initialise the starting state of the FSM.
template<class StateValue,class Stim>

 Overload – Issue 23 – December 1997

 Page 29

StateMachine<StateValue,Stim>::StateMachine(const StateValue &initialState)
: currentStateValue(initialState)
{ }

A default destructor that does nothing useful for now.
template<class StateValue,class Stim>
StateMachine<StateValue,Stim>::~StateMachine()
{ }

The following two methods implement adding and removing states from the FSM. This is done
by value. States are stored in a STL map container, accessed by the value of the state they
represent.
template<class StateValue,class Stim>
bool StateMachine<StateValue,Stim>::addState(const State<StateValue,Stim> &state)
{
 stateMap[state.value()] = state;
 return true;
}

template<class StateValue,class Stim>
bool StateMachine<StateValue,Stim>::removeState(const State<StateValue,Stim> &state)
{
 StateContainer::iterator s = stateMap.find(state.value());
 if(s!=stateMap.end())
 {
 stateMap.erase(s);
 return true;
 }
 return false;
}

The following two methods form the top-level interface for adding and removing actions. These
are added by reference, allowing multiple states and FSMs to reuse action objects. Note that the
underlying State object is what actually holds the reference to the action object.
template<class StateValue,class Stim>
bool StateMachine<StateValue,Stim>::attachAction
(const StateValue &sv,ActionTime at,ActionInterface<StateValue,Stim> *ai)
{
 StateContainer::iterator s = stateMap.find(sv);
 if(s!=stateMap.end())
 {
 return (*s).second.attachAction(at,ai);
 }
 return false;
}

template<class StateValue,class Stim>
bool StateMachine<StateValue,Stim>::detachAction
(const StateValue &sv,ActionTime at,ActionInterface<StateValue,Stim> *ai)
{
 StateContainer::iterator s = stateMap.find(sv);
 if(s!=stateMap.end())
 {
 return (*s).second.detachAction(at,ai);
 }
 return false;
}

This is how we get the FSM to change state. The return value indicates whether or not the
stimulation was successful or not. A false return value means that the current state did not have a
valid transition for the given stimulus.

 Overload – Issue 23 – December 1997

 Page 30

template<class StateValue,class Stim>
bool StateMachine<StateValue,Stim>::stimulate(const Stim &stim)
{
 StateContainer::iterator currStatePair = stateMap.find(currentStateValue);

 if(currStatePair!=stateMap.end())
 {
 StateValue nextStateValue;
 if((*currStatePair).second.getNextStateValue(stim,nextStateValue))
 {
 if(nextStateValue!=currentStateValue)
 {
 StateContainer::iterator nextStatePair
 = stateMap.find(nextStateValue);
 if(nextStatePair!=stateMap.end())
 {
 (*currStatePair).second.leave(this);
 currentStateValue = nextStateValue;
 (*nextStatePair).second.enter(this);
 return true;
 }
 }
 }
 }
 return false;
}

This simple accessor allows us to access the current state value of the FSM.
template<class StateValue,class Stim>
const StateValue &StateMachine<StateValue,Stim>::getCurrentStateValue()
{
 return currentStateValue;
}

As it turns out, StateMachine turns out to be a very simple class. Its main responsibility is to serve
as a repository for the states and to indicate to the states that they are being left and entered. The
two most important aspects of the FSM are delegated to the State class - the triggering and
management of actions and knowledge of valid state transitions. In fact, StateMachine has no
direct knowledge of the transitions at all!

Moving on to the State class, we can see how actions are stored and triggered and how transitions
are managed.

state.cc

The State class has a simple constructor. It only initialises the value represented by this state.
template<class StateValue,class Stim>
State<StateValue,Stim>::State(const StateValue &sval)
: sval_(sval)
{ }

The copy constructor ensures the state value, any referenced actions and the state transition map
are copied properly.
template<class StateValue,class Stim>
State<StateValue,Stim>::State(const State &pattern)
: sval_(pattern.sval_),
 before_(pattern.before_),
 during_(pattern.during_),
 after_(pattern.after_),
 tmap_(pattern.tmap_)

 Overload – Issue 23 – December 1997

 Page 31

{ }

States have a simple destructor that does nothing for now.
template<class StateValue,class Stim>
State<StateValue,Stim>::~State()
{ }

The assignment operator is necessary for correct operation with STL containers.
template<class StateValue,class Stim>
State<StateValue,Stim> &
State<StateValue,Stim>::operator=(const State<StateValue,Stim> &pattern)
{
 if(this!=&pattern)
 {
 sval_ = pattern.sval_;
 before_ = pattern.before_;
 during_ = pattern.during_;
 after_ = pattern.after_;
 tmap_ = pattern.tmap_;
 }
 return *this;
}

Simple accessor for the state value represented by this object.
template<class StateValue,class Stim>
const StateValue &
State<StateValue,Stim>::value() const
{
 return sval_;
}

This is how we add knowledge of next states to the FSM. The transitions must be set up prior to
adding the states to the StateMachine instance itself. This is a potential flaw!!! (See later.)
template<class StateValue,class Stim>
bool
State<StateValue,Stim>::addTransition(const Stim &stim,const StateValue &nextSval)
{
 TransitionMap::value_type t(stim,nextSval);
 pair<TransitionMap::iterator,bool> retval = tmap_.insert(t);

 return retval.second;
}

This method allows the containing StateMachine class to find out what the value of the next state
should be in response to a particular input stimulus. If a state has no next state for the given
stimulus then false is returned to the client.
template<class StateValue,class Stim>
bool State<StateValue,Stim>::getNextStateValue
(const Stim &stim,StateValue &nextSval)
{
 TransitionMap::iterator n = tmap_.find(stim);
 if(n!=tmap_.end())
 {
 nextSval = (*n).second;
 return true;
 }
 return false;
}

 Overload – Issue 23 – December 1997

 Page 32

The next two methods handle adding and removing actions to be executed before a state is
entered, while a state is active or just before state is left. Note that the actions are stored by
reference. The bulk of the methods are spent identifying the correct internal collection to work on
(one of before, during and after).
template<class StateValue,class Stim>
bool
State<StateValue,Stim>::attachAction(ActionTime at,
 ActionInterface<StateValue,Stim> *ai)
{
 switch(at)
 {
 case Before: before_.insert(ai); break;
 case During: during_.insert(ai); break;
 case After: after_.insert(ai); break;
 default: return false; break;
 }
 return true;
}

template<class StateValue,class Stim>
bool State<StateValue,Stim>::detachAction(ActionTime at,
 ActionInterface<StateValue,Stim> *ai)
{
 bool retval = false;
 ActionContainer *actionSet = 0;

 switch(at)
 {
 case Before: actionSet = &before_; break;
 case During: actionSet = &during_; break;
 case After: actionSet = &after_; break;
 default: return false; break;
 }
 ActionContainer::iterator toErase = actionSet->find(ai);
 if(toErase!=actionSet->end())
 {
 actionSet->erase(toErase);
 return true;
 }
 else
 {
 return false;
 }
}

When a state is entered we must execute all the appropriate actions - call all the “before” actions
followed by all the “during” actions.
template<class StateValue,class Stim>
void State<StateValue,Stim>::enter(StateMachine<StateValue,Stim> *sm)
{
 ActionContainer::iterator iter1(before_.begin());
 while(iter1!=before_.end())
 {
 (*iter1)->start(sm);
 iter1++;
 }
 ActionContainer::iterator iter2(during_.begin());
 while(iter2!=during_.end())
 {
 (*iter2)->start(sm);
 iter2++;
 }
}

 Overload – Issue 23 – December 1997

 Page 33

When we leave a state we should stop all the “during” actions and call all the “after” actions.
template<class StateValue,class Stim>
void State<StateValue,Stim>::leave(StateMachine<StateValue,Stim> *sm)
{
 ActionContainer::iterator iter1(during_.begin());
 while(iter1!=during_.end())
 {
 (*iter1)->stop(sm);
 iter1++;
 }
 ActionContainer::iterator iter2(after_.begin());
 while(iter2!=after_.end())
 {
 (*iter2)->start(sm);
 iter2++;
 }
}

Using The Classes

I’ve always found the most useful way of
presenting a new piece of code to anyone is
to work through an example. This also gives
a chance for a measure of peer review and an
opportunity for comments and questions that
may result in overall improvements to your
original ideas - both the design and
implementation aspects.

So, what I’ll present is something I’m
familiar with in my day-to-day work - a
simplified state machine representing a FSM
used to control a generic xDSL (Digital
Subscriber Loop) line card. Briefly, these
cards are an emerging technology starting to
be used to provide high bandwidth
connections to the Internet.

For management purposes we’ll assume the
card has the following “states” associated
with its operation:

• Decommission - the card is not currently
operating and may not be used.

• Normal - the card is operating normally
with no problems.

• Warning, Minor, Major & Critical - a
range of severities, from a potential
problem to service affecting fault.

• Downloading - the card is involved in
downloading a new copy of its own
software.

Next, we need to have some inputs to the
system. We can list these in a table showing
the input, current state and next state. Any
stimulus/state pair not shown in this table
will be deemed invalid. Note that the state
model is much simplified.

Stimulus Current
State(s)

Next State

decomm <any state> Decommissi
on

comm Decommission Normal

warn Normal Warning

minor Normal |
Warning

Minor

major Normal |
Warning |
Minor

Major

crit Normal |
Warning |
Minor |
Major

Critical

startdloa
d

Normal Download

enddload Download Normal

clear Warning |
Minor |
Major |

Normal

 Overload – Issue 23 – December 1997

 Page 34

Critical

Table 1 xDSL Card State Transitions

To simplify the example I’ll use strings to
represent all states and stimuli. Going on
from the table above we can declare the state
machine itself as:
StateMachine<std::string,std::string>
 xDSLfsm(“Decommission”);

This assumes that any new card will start in
the decommissioned state. Most likely we
would in reality query the card and initialise
the state machine appropriately. Next we can
declare the states themselves:
typedef State<std::string,std::string>
 xDSLstate;

xDSLstate decommission(“Decommission”);
xDSLstate normal(“Normal”);
xDSLstate minor(“Minor”);
xDSLstate major(“Major”);
xDSLstate warning(“Warning”);
xDSLstate critical(“Critical”);
xDSLstate download(“Download”);

So, now we have the state machine itself and
the states we wish to model. The final stage
before we can add states to the state machine
is to define the transitions, which we do as
follows:
decommission.addTransition(
 “commission”, // the stimulus
 normal.value()); // the next state

This can be repeated tediously until all the
transitions listed in the table are specified, so
I won’t list them all here!

Looking at the last few lines of code I see the
first potential improvement - I have currently
defined the addTransition interface to take the
value represented by the state. Perhaps it
should take an actual state instead? This
would have the benefit of ensuring there was
actually a valid state object created at some
point for the transition.

Finally, we can add the states to the state
machine itself:
xDSLfsm.addState(decommission);
xDSLfsm.addState(normal);

xDSLfsm.addState(warning);
xDSLfsm.addState(minor);
xDSLfsm.addState(major);
xDSLfsm.addState(critical);
xDSLfsm.addState(download);

At this stage the state machine is now ready
to accept input from external sources.
However, it won’t actually do anything
useful in it’s current condition. To remedy
this we’re going to have to add some actions
to the state machine via classes derived from
ActionInterface, but I’ll leave that until next
time!

[The base source code for this article can be
picked up from:
http://www.rhuagh.demon.co.uk/fsm-code/. This
consists of the files sm.h, sm.cc, state.h,
state.cc and actionif.h.]

Einar Nilsen-Nygaard

EinarNN@atl.co.uk
einar@rhuagh.demon.co.uk

Debug new and delete Preamble
by Peter A. Pilgrim

About a year I wrote a few articles for CVu
[1] [2] on how to check the integrity of
dynamic memory allocation and de-
allocation in C. I supplied some cut down
code examples of a debuggable module
which I was actually using in a real-world
practical development. I elaborated on what
most C users knew well already; the special
problems that are encountered when they use
malloc and free. There can be memory
leakage, corrupted memory blocks, underrun
of a memory range, overrun of an array
range, double frees, and pointers to memory
that is not properly initialised. How do you
check the integrity of the dynamic memory,
and how can you track it? There were a
number of solutions presented, for ACCU
members to use in C in CVu 8.5 and CVu
8.6 from contributors including myself.
However, I have not seen a C++ solution
appear in either CVu or Overload, but they
surely exist, right? (I know somebody sent a

 Overload – Issue 23 – December 1997

 Page 35

C++ solution to Francis, but that person did
not sign it!)

Replacing Malloc and Free

In C one can define macros that very cleanly
override the standard memory management
functions, because they can be emulated. For
example:
#ifdef DEBUG_MALLOC
#define DBG_MALLOC(nbytes) \
 dbg_malloc(ptr)
#else
#define DBG_MALLOC(nbytes)
 malloc(nbytes)
#endif

Replacing New and Delete

Things aren’t quite so simple in C++ because
most memory allocation is performed
through the global new and delete
operators. However, a mechanism is
provided for overloading them with your
own implementation [3]. Once you replace
the global new and delete operators and
link them in they will be used by whatever
needs free store. This flexibility allows us to
write debuggable versions of these operators.
However, you must implement them
according to convention, and quite carefully.
They may be called at any point in your
program where heap space needs to be
allocated or deallocated.

The signatures for the global new and delete
are defined as:
void *operator new(size_t);
void operator delete(void*);

void *operator new[](size_t);
void operator delete[](void*);

The function operator new() is called
to allocate a suitable number of bytes for an
object. The function operator new[]()
is called to allocate space for an array of
objects. It is important to note that the
standard implementations of operator
new() and operator new[]() do not
initialise the memory returned. However, we
will use this fact to our advantage later on.

In the most recent draft of the C++ Standard,
an exception is thrown when new can find
no store to allocate. This exception is an
object of type bad_alloc. You may only
find this implemented in the very latest
versions of your C++ libraries.
#include <iostream>
#include <new>
#include <exceptions>
using namespace std;

void blowupFreeStore() {
 try {
 for (;;) new char[10240];
 }
 catch (bad_alloc) {
 cerr << “No more core!”
 }
}

In older C++ environments, you must always
test the returned pointer from new with the
null pointer in order check if your
allocation was successful [3].

Even with the more recent C++
environments from a couple of years ago,
you could always configure what new
should do if the free store is exhausted.
Whenever new fails, it first calls a function
specified by the call to
set_new_handler() [6]. This is an
important hook that actually allows library
writers to implement a C++ garbage
collector, which is beyond the scope of this
series of articles.

So, we have for example:
void no_more_core()
{
 cerr << “new failure: no more core!”
 throw bad_alloc();
}

int main()
{
 set_new_handler(no_more_core);
 for (;;) new char [10240];
 cout << “this never gets printed\n”;
}

In the very latest committee draft (CD2),
available on the web-site at Warwick
University [7], defines new and delete as
follows:
namespace std {

 Overload – Issue 23 – December 1997

 Page 36

 class bad_alloc;

 struct nothrow_t {};

 extern const nothrow_t nothrow;
 typedef void (*new_handler)();
 new_handler
 set_new_handler(new_handler new_p)
 throw();
}

The above defines the exception class
bad_alloc and a new type called
nothrow_t. CD2 defines how a standard
C++ conforming environment can support
the traditional global new and delete
operators which return a null pointer if no
more free store can be found. The draft
defines these alternative definitions:
void * operator new(size_t size,
 const nothrow_t&) throw ();
void operator delete(void *ptr,
 const nothrow_t&) throw ();

void * operator new[](size_t size,
 const nothrow_t&) throw ();
void operator delete[](void *ptr,
 const nothrow_t&) throw ();

Notice that these definitions do not throw
any exceptions at all. Also, if no free store
can be found, then the function specified by
the normal set_new_handler is not
called, but a null pointer is returned. Since
the CD2 is so new (as I am writing on 18th
November 1997) my GNU C++ Compiler
2.7.2 does not support the alternative none
throwable global operators, therefore I could
not test these new features.

With this information we can begin to think
about how we might write debuggable new
and delete operators. Your C++
compiler’s run time stub function, which is
executed by the operating system when
main() is about be called, may have to
construct global variables before main() is
called, and possibly destroy any variables
after main() returns. This means that the
global new and delete operators may be
invoked even before main() is called (and
afterwards if main() returns normally).

What this means is that any debuggable heap
allocation must be careful not to get itself
into a dangerous recursive loop. It is clearly
possible to write a global new operator that
calls itself again and again, either directly or
indirectly, for example by using a STL
collection class.

Badness To Detect

We would like to detect a number of
pathological cases of bad dynamic pointer
use. The first case being trying to free an
undefined pointer which was not returned by
new().
void Case1() {
 int *p; // `p’ is anything!
 delete p;
}

The second would be the typical freeing a
pointer to a object which has already been
freed.
void Case2() {
 char *s = new char [256];
 delete [] s;
 …
 delete [] s; // Error
}

The third is the case where a pointer
dereferences an element E of a dynamic
array object A lower than the lowest bound
of the array A. There should be way of
detecting the corruption of the lower
boundary.
void Case3() {
 int j;
 float *x = new float[10];
 for (j=-2; j<2; ++j) x[j] = j;
 delete [] x;
}

The fourth is the case where a pointer
dereferences an element E of a dynamic
array object A higher than the upper bound
of the array A.
void Case4() {
 int j;
 float *x = new float[10];
 for (j=3; j<12; ++j) x[j] = j;
 delete [] x;
}

 Overload – Issue 23 – December 1997

The fifth is the case where memory is
leaked: free store that is allocated, but is not
deallocation by the time the program or
thread terminates.

Case 3. Check if the lower bound of the
block was corrupted by comparing
the prefix part with ‘OVERL%AD’

Case 4. Check if the upper bound of the
block was corrupted by checking the
suffix part with ‘DA$LREVO’.

Void Case5() {
 char *v = new char [128];
 strcpy(v, “peterp@xenonsoft”);
 // Memory leak for `v’!
}

The remaining two cases; double-free and
memory leakage will be considered in the
next article. How to Detect Badness

The basic idea of heap space integrity is to
use some special form of identification
within the memory block itself. The
algorithm allocates a block of heap memory
bigger than the user requested, and divides
this memory block, into three parts: the
prefix, the middle, and the suffix. Some
magic identifier bytes are written into both
the prefix and the suffix, and a pointer to the
middle returned to the user (appropriately
recast to void *). I have sketched below in
a diagram showing the memory block
divided into three sections.

Enjoy.
Peter Andrew Pilgrim

peterp@xenonsoft.demon.co.uk

1. "Dynamic Memory Integrity", ACCU/
CVu 8.5, Peter A. Pilgrim

2. "Dynamic Memory Tracking", ACCU/
CVu 8.6, Peter A. Pilgrim

3. “Advanced C++ Programming Styles
and Idioms” by James O. Coplien,
publ:Addison Wesley; Chapter 3.6: New
and Delete.

PREFIX MIDDLE SUFFIX

OVERL%AD DA$LREVO

Address Offset in Bytes Increasing Addresses

4. "C++ Primer" by Stanley B. Lippman,
2nd Edition, publ.: Addison Wesley; The
`new' operator pg. 114.

5. "Effective C++" by Scott Meyers, Publ.:
1992; Section 8: Adhere to convention
when writing `new', The prefix of the memory block is identified

with the eight byte string ‘OVERL%AD’.
The string is reversed and a character
changed to make up a different identifier for
the suffix ‘DA$LREVO’.

6. “The C++ Programming Language” by
Bjarne Stroustrup, 3rd Edition, Publ:
Addison & Wesley; Section 6.2.6: Free
Store, Section 10.4.11: Placement of
Objects, Section 14.4.4: Exceptions and
New and Section 19.4: Allocators. With these identifiers we can:

Case 1. Detect if a memory block is valid,
that is, if it was allocated by operator
new.

7. The recently published Public Preview of
ISO C++ Committee Draft Version Two
<http://www.maths.warwick.ac.uk/cpp
/pub> at the University of Warwick.

editor << letters;

 Page 37

 Overload – Issue 23 – December 1997

 Page 38

Managing Inline with macros

From Tony Houghton

I'm a new subscriber to Overload and I just
read about the problems with inlining. I
thought you might like to hear about an
approach I took a while ago. I decided that
the disadvantages of inlining during
development were too great, but the
advantages in a final product might be
worthwhile; so I decided to make it possible
to turn inlining on and off with a couple of
macros predefined in the makefile. It does
result in a little more typing of the source,
but that shouldn't cause a sensible
programmer to lose any sleep.

Take a simple class with functions we might
want to inline:

class DumbClass
{
public:
 DumbClass(int a = 0) { value = a; }
 void set_value(int a) { value = a; }
 int get_value() const { return value;}
private:
 int value;
};

This could be rewritten as:

// DumbClass.h

#ifndef __DumbClass_h
#define __DumbClass_h

class DumbClass
{
public:
 DumbClass(int a = 0);
 void set_value(int a);
 int get_value() const;
private:
 int value;
};

#ifndef DONT_INLINE
#include "DumbClass.cc"
#endif

#endif

// DumbClass.cc

#ifndef __DumbClass_h
#include "DumbClass.h"
#endif

INLINE DumbClass::DumbClass(int a)
{ value = a; }

INLINE void DumbClass::set_value(int a)
{ value = a; }

INLINE int DumbClass::get_value() const
{ return value; }

Then if you want inlining you use these
compiler options: -DINLINE=inline And if
you don't want inlining: -DINLINE -
DDONT_INLINE

Tony Houghton
tonyh@tcp.co.uk

 Overload – Issue 23 – December 1997

 Page 39

Beyond ACCU... C++ on the ‘net

Introduction

Welcome to a revamp of ‘ACCU and the
‘Net’. Each issue we’ll be presenting and
reviewing online resources for C++
Designers and Programmers.

Enough rope to shoot yourself in the
foot...

For an interesting site dealing with C++, OO
and Java, have a look at Allen Holub’s web
site.

Holub www.holub.com

Guru of the week...

If you're looking for C++ debates, visit Guru
of the Week... I've only seen one of its 25
solutions grilled on ACCU.general so it must
be getting something right. So far, it has
dealt with many things including temporary
objects, the Standard Library, class
mechanics, overriding virtual functions,
const-correctness, memory management,
exception safety, OOP, and class
relationships.

GOTW www.cntc.com/resources/gotw.h
tml

Standard C++.

Although the Final Draft International
Standard (FDIS) isn’t online yet, the 1997
C++ Public Review Corrective Draft 2
(CD2) document is available online from
www.maths.warwick.ac.uk. CD2 is
presented much like the reference manual
section of Bjarne Stroustrup's "The C++
Programming Language" (2e). CD2 builds
on that work and P.J. Plauger's book, "The
Draft Standard C++ Library".

Here's a brief overview of CD2, to whet your
appetite:

Core Language: Lexical conventions, Basic
concepts, Standard conversions, Expressions,
Statements, Declarations, Declarators,
Classes, Derived classes, Member access
control, Special member functions,
Overloading, Templates, Exception
handling, Preprocessing directives.

Library: Introduction, Language support,
Diagnostics, General utilities, Strings,
Localization, Containers, Iterators,
Algorithms, Numerics, Input/output.

Annexes: Grammar summary,
Implementation quantities, Compatibility,
Future directions, Universal character-
names.

Those references are fine but they need to be
backed up by suitable tutorial material. My
main C++ tutorial has been "The C++
Programming Language" (2e). In 1997
though, it has been complemented by
"Effective C++", "More Effective C++" (by
Scott Meyers) and "C++ Programming style"
(Tom Cargill). Recently, I've had a look at
"The C++ Programming Language" 3e,
"Advanced C++ Programming" (James
Coplien). Together, these books have
answered some questions I had about C++.
Curiously, they’re all books published by
Addison-Wesley.

FDIS www.maths.warwick.ac.uk/c
++

CD2 www.maths.warwick.ac.uk/c
++/pub/wp/html/cd2/index.ht
ml

The Draft
Standard
C++
Library

www.dinkumware.com/htm_c
pl/index.html

The C++
Programmin
g Language

www.awl.com/cp/stroustrup3
e

http://www.dinkumware.com/htm_cpl/index.html
http://www.dinkumware.com/htm_cpl/index.html

 Overload – Issue 23 – December 1997

 Page 40

Addison-
Wesley

www.awl.com/cseng)

ACCU contact details.

See Overload Issue 22.

Next issue... C++ libraries

Next month the STL and other C++ libraries
will be looked at. This column already owes
a lot to the suggestions made on
ACCU.general (thanks).... so please post
hints, links and opinions re: C++ libraries on
ACCU.general.

Ian Bruntlett
Ibruntlett@libris.co.uk

http://www.awl.com/cseng)

 Overload – Issue 23 – December 1997

 Page 41

Credits

Editor
John Merrells

merrells@netscape.com

4 Park Mount,
Harpenden, Herts, AL5 3AR,

U.K.

P.O. Box 2336,
Sunnyvale, CA 94087-0336,

U.S.A.

Readers
Ray Hall

Ray@ashworth.demon.co.uk

Ian Bruntlett
ibruntlett@libris.co.uk

Einar Nilsen-Nygaard

EinarNN@atl.co.uk
einar@rhuagh.demon.co.uk

Production Editor
Alan Lenton

alan@ibgames.com

Advertising
John Washington

accuads@wash.demon.co.uk
Cartchers Farm, Carthouse Lane

Woking, Surrey, GU21 4XS

Membership and Subscription Enquiries
David Hodge

davidhodge@compuserve.com
31 Egerton Road

Bexhill-on-Sea, East Sussex. TN39 3HJ

Copyrights and Trademarks

Some articles and other contributions use terms which are either registered trademarks or claimed
as such. The use of such terms is intended neither to support nor disparage any trademark claim.
On request, we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of ACCU.
An author of an article or column (not a letter or review of software or book) may explicitly offer
single (first serial) publication rights and thereby retain all other rights. Except for licences
granted to (1) Corporate Members to copy solely for internal distribution (2) members to copy
source code for use on their own computers, no material can be copied from Overload without
written permission of the copyright holder.

Copy deadline

All articles intended for inclusion in Overload 23 should be submitted to the editor, John Merrells
< merrells@netscape.com>, by Janurary 15th.

 Overload – Issue 23 – December 1997

 Page 42

	Contents
	Editorial
	From C++ To C
	Why C?
	Bad C
	Good C
	Movies
	Sign off
	Copy Deadline

	Software Development in C++
	UML - Objects and Patternsby Richard Blundell
	Introduction
	A Refresher
	UML 1.1
	Objects
	Links
	Static methods and members
	Design Patterns
	Patterns as Collaborations
	Conclusion
	References

	Candidates for inlineby Francis Glassborow
	Candidates for Inlining Qualification
	Accessors
	Forwarding Functions
	Resolution of Overload Ambiguity
	Does It Matter?

	The Draft International C++ Standard
	The Casting Vote by Francis Glassborow
	Future Participation
	Conclusion

	The Story of auto_ptrA Cautionary Taleby Francis Glassborow
	Dynamic Arrays
	Polymorphic Singletons
	Warnings
	Example

	C++ Techniques
	STL Vectorsby Sergey Ignatchenkoand Dmitry Ligum
	Containers
	Iterator
	Vector Modification
	Vector Range Check
	Complex Objects In Containers
	Sorting and Searching
	Vector Implementation
	Literature:

	Whiteboard
	Rational Values Implementation Part 2by The Harpist
	Arithmetic Operators
	Multiplication
	Implementation Considerations
	Something Else

	A Finite State Machine Design IIby Einar Nilsen-Nygaard
	Recap
	Implementation
	sm.cc
	state.cc
	Using The Classes

	Debug new and delete Preambleby Peter A. Pilgrim
	Replacing Malloc and Free
	Replacing New and Delete
	Badness To Detect
	How to Detect Badness

	editor << letters;
	Managing Inline with macros

	Beyond ACCU... C++ on the ‘net
	Introduction
	Enough rope to shoot yourself in the foot...
	Guru of the week...
	Standard C++.
	ACCU contact details.
	Next issue... C++ libraries
	Credits
	Copyrights and Trademarks
	Copy deadline

