
 Overload - Issue 25 - April 1998

 ISSN 1354-3172

Overload

Journal of the ACCU C++ Special Interest Group

Issue 25

April 1998

 Overload - Issue 25 - April 1998

Contents
Software Development in C++ 1
Counted Body Techniques By Kevlin Henney 1
counted_ptr<type> By Jon Jagger 7
UML – Parameterised Classes (Templates) and Utilities By Richard Blundell 13
The Draft International C++ Standard 17
(Almost) No Casting Vote Standard’s Report By Francis Glassborow 17
Generalizing Overloading for C++2000 By Bjarne Stroustrup 20
Whiteboard 24
Irrational Behaviour By Graham Jones 25
Implementations & Interfaces By The Harpist 26
Debuggable new and delete Part Two By Peter Pilgrim 29
Beyond ACCU... C++ on the ‘net 28

Editorial

Treats

We've got such a vast array of treats for you
this issue that I've been squeezed off my usual
page. Amongst the glittering delights are:

• The Colour Cover.

• Kevlin’s revelations whilst skip diving
over the Christmas holidays.

• An article from Bjarne Stroustrup on
C++2000 features.

• And, the unveiling of the ACCU
Overload web pages.

Web Pages

The Overload web pages are now online and
available for your enjoyment. Slightly sparse,
but we hope to expand its breadth as each
issue is published. At present there’s a
bibliography of articles from past issues, and
we'll be posting some complete issues,
articles, and source code in the future.

If you're interested in being the Overload
web-meister then please contact us. It'd be a
great excuse to learn about web publishing
technologies.

Submissions

As ever, we are always looking for
contributions from new authors, and are
particularly interested in shorter pieces of
work. With many 4 and 5 page articles it
becomes tricky getting just the right number
of pages. The occasional one or two page
text really helps.

We'd be particularly interested to hear of your
experiences deploying patterns in your
current project. Have you found the Design
Patterns book useful?

Ray Hall would like to hear from you if you
are interested in reviewing books. Overload
book reviews tend to have more depth than
their C-Vu counterparts, and we'd like to keep
that differentiation. In fact, a survey of books
covering a single topic would be of interest to
many. Perhaps Patterns, yet again, or the
under explored STL.

Copy Deadline

All articles intended for publication in
Overload 26 should be submitted to the
editor, by May 5th.

John Merrells

merrells@netscape.com

 Overload - Issue 25 - April 1998

 Overload - Issue 25 - April 1998

Software Development in C++

Counted Body Techniques
By Kevlin Henney

Reference counting techniques? Nothing new,
you might think. Every good C++ text that
takes you to an intermediate or advanced
level will introduce the concept. It has been
explored with such thoroughness in the past
that you might be forgiven for thinking that
everything that can be said has been said.
Well, let's start from first principles and see if
we can unearth something new....

And then there were none...

The principle behind reference counting is to
keep a running usage count of an object so
that when it falls to zero we know the object
is unused. This is normally used to simplify
the memory management for dynamically
allocated objects: keep a count of the number
of references held to that object and, on zero,
delete the object.

How to keep a track of the number of users of
an object? Well, normal pointers are quite
dumb, and so an extra level of indirection is
required to manage the count. This is
essentially the PROXY pattern described in
Design Patterns [Gamma, Helm, Johnson &
Vlissides, Addison-Wesley, ISBN 0-201-
63361-2]. The intent is given as

Provide a surrogate or placeholder for
another object to control access to it.

Coplien [Advanced C++ Programming Styles
and Idioms, Addison-Wesley, ISBN 0-201-
56365-7] defines a set of idioms related to
this essential separation of a handle and a
body part. The Taligent Guide to Designing
Programs [Addison-Wesley, ISBN 0-201-
40888-0] identifies a number of specific
categories for proxies (aka surrogates).
Broadly speaking they fall into two general
categories:

Hidden: The handle is the object of interest,
hiding the body itself. The functionality of the
handle is obtained by delegation to the body,
and the user of the handle is unaware of the
body. Reference counted strings offer a
transparent optimisation. The body is shared
between copies of a string until such a time as
a change is needed, at which point a copy is
made. Such a COPY ON WRITE pattern (a
specialisation of LAZY EVALUATION) requires
the use of a hidden reference counted body.

Explicit: Here the body is of interest and the
handle merely provides intelligence for its
access and housekeeping. In C++ this is often
implemented as the SMART POINTER idiom.
One such application is that of reference
counted smart pointers that collaborate to
keep a count of an object, deleting it when the
count falls to zero.

Attached vs detached

For reference counted smart pointers there are
two places the count can exist, resulting in
two different patterns, both outlined in
Software Patterns [Coplien, SIGS, ISBN 0-
884842-50-X]:

COUNTED BODY or ATTACHED COUNTED
HANDLE/BODY places the count within the
object being counted. The benefits are that
countability is a part of the object being
counted, and that reference counting does not
require an additional object. The drawbacks
are clearly that this is intrusive, and that the
space for the reference count is wasted when
the object is not heap based. Therefore the
reference counting ties you to a particular
implementation and style of use.

DETACHED COUNTED HANDLE/BODY places
the count outside the object being counted,
such that they are handled together. The clear
benefit of this is that this technique is
completely unintrusive, with all of the
intelligence and support apparatus in the
smart pointer, and therefore can be used on

 Page 1

 Overload - Issue 25 - April 1998

classes created independently of the reference
counted pointer. The main disadvantage is
that frequent use of this can lead to a
proliferation of small objects, i.e. the counter,
being created on the heap.

Even with this simple analysis, it seems that
the DETACHED COUNTED HANDLE/BODY
approach is ahead. Indeed, with the increasing
use of templates this is often the favourite,
and is the principle behind the common – but
not standard – counted_ptr.

A common implementation of COUNTED
BODY is to provide the counting mechanism
in a base class that the counted type is derived
from. Either that, or the reference counting
mechanism is provided anew for each class
that needs it. Both of these approaches are
unsatisfactory because they are quite closed,
coupling a class into a particular framework.
Added to this the non-cohesiveness of having
the count lying dormant in a non-counted
object, and you get the feeling that excepting
its use in widespread object models such as
COM and CORBA the COUNTED BODY
approach is perhaps only of use in specialised
situations.

A requirements based approach

It is the question of openness that convinced
me to revisit the problems with the COUNTED
BODY idiom. Yes, there is a certain degree of
intrusion expected when using this idiom, but
is there anyway to minimise this and
decouple the choice of counting mechanism
from the smart pointer type used?

In recent years the most instructive body of
code and specification for constructing open
general purpose components has been the
Stepanov and Lee's STL (Standard Template
Library), now part of the C++ standard
library. The STL approach makes extensive
use of compile time polymorphism based on
well defined operational requirements for
types. For instance, each container, contained
and iterator type is defined by the operations
that should be performable on an object of
that type, often with annotations describing
additional constraints. Compile time
polymorphism, as its name suggests, resolves

functions at compile time based on function
name and argument usage, i.e. overloading.
This is less intrusive, although less easily
diagnosed if incorrect, than runtime
poymorphism that is based on types, names
and function signatures.

This requirements based approach can be
applied to reference counting. The operations
we need for a type to be Countable are
loosely:

An acquire operation that registers interest
in a Countable object.

A release operation unregisters interest in
a Countable object.

An acquired query that returns whether or
not a Countable object is currently acquired.

A dispose operation that is responsible for
disposing of an object that is no longer
acquired.

Note that the count is deduced as a part of the
abstract state of this type, and is not
mentioned or defined in any other way. The
openness of this approach derives in part
from the use of global functions, meaning that
no particular member functions are implied; a
perfect way to wrap up an existing counted
body class without modifying the class itself.
The other aspect to the openness comes from
a more precise specification of the operations.

For a type to be Countable it must satisfy the
following requirements, where ptr is a non-
null pointer to a single object (i.e. not an
array) of the type, and #function indicates
number of calls to function(ptr):

Expression

Acquire(ptr
)

no requirement for return
type
post: acquired(ptr)

Release(ptr
)

no requirement for return
type
pre: acquired(ptr)
post: acquired(ptr)
== #acquire >

 Page 2

 Overload - Issue 25 - April 1998

#release

Acquired(pt
r)

Return type convertible to
bool
return: #acquire >
#release

Dispose
 (ptr,
ptr)

no requirement for return
type
pre: !acquired(ptr)
post: *ptr no longer
usable

Note that the two arguments to dispose are
to support selection of the appropriate type
safe version of the function to be called. In
the general case the intent is that the first
argument determines the type to be deleted,
and would typically be templated, while the
second selects which template to use, e.g. by
conforming to a specific base class.

In addition the following requirements must
also be satisfied, where null is a null pointer
to the Countable type:

Expression Semantics and notes

acquire(nul
l)

No requirement for
return type
action: none

release(nul
l)

No requirement for
return type
action: none

acquired(nu
ll)

Return type convertible
to bool
return: false

Dispose
 (null,
null)

No requirement for
return type
action: none

Note that there are no requirements on these
functions in terms of exceptions thrown or
not thrown, except that if exceptions are
thrown the functions themselves should be
exception safe.

Getting smart

Given the Countable requirements for a type,
it is possible to define a generic smart pointer
type that uses them for reference counting:
template<typename countable_type>
class countable_ptr
{
public: // construction and destruction

 explicit countable_ptr(countable_type*);
 countable_ptr(const countable_ptr &);
 ~countable_ptr();

public: // access

 countable_type *operator->() const;
 countable_type &operator*() const;
 countable_type *get() const;

public: // modification

 countable_ptr &clear();
 countable_ptr &assign(countable_type *);
 countable_ptr &assign
 (const countable_ptr&);
 countable_ptr &operator=
 (const countable_ptr &);

private: // representation

 countable_type *body;
};

The interface to this class has been kept
intentionally simple, e.g. member templates
and throw specs have been omitted, for
exposition. The majority of the functions are
quite simple in implementation, relying very
much on the assign member as a keystone
function:
template<typename countable_type>
countable_ptr<countable_type>::
countable_ptr(countable_type *initial)
 : body(initial)
{
 acquire(body);
}

template<typename countable_type>
countable_ptr<countable_type>::
countable_ptr
 (const countable_ptr &other)
 : body(other.body)
{
 acquire(body);
}

template<typename countable_type>
countable_ptr<countable_type>::
~countable_ptr()
{
 clear();
}

 Page 3

 Overload - Issue 25 - April 1998

template<typename countable_type>
countable_type
*countable_ptr<countable_type>::
operator->() const
{
 return body;
}

template<typename countable_type>
countable_type
&countable_ptr<countable_type>::
operator*() const
{
 return *body;
}

template<typename countable_type>
countable_type
*countable_ptr<countable_type>::
get() const
{
 return body;
}

template<typename countable_type>
countable_ptr<countable_type>
&countable_ptr<countable_type>::
clear()
{
 return assign(0);
}

template<typename countable_type>
countable_ptr<countable_type> &
countable_ptr<countable_type>::
assign(countable_type *rhs)
{
 // set to rhs (this sequence
 // is self assignment safe)
 acquire(rhs);
 countable_type *old_body = body;
 body = rhs;

 // tidy up
 release(old_body);
 if(!acquired(old_body))
 {
 dispose(old_body, old_body);
 }

 return *this;
}

template<typename countable_type>
countable_ptr<countable_type> &
countable_ptr<countable_type>::
assign(const countable_ptr &rhs)
{
 return assign(rhs.body);
}

template<typename countable_type>
countable_ptr<countable_type> &
countable_ptr<countable_type>::
operator=(const countable_ptr &rhs)
{
 return assign(rhs);
}

Public accountability

Conformance to the requirements means that
a type can be used with countable_ptr.
Here is an implementation mix-in class (mix-
imp) that confers countability on its derived
classes through member functions. This class
can be used as a class adaptor:
class countability
{
public: // manipulation

 void acquire() const;
 void release() const;
 size_t acquired() const;

protected:
 // construction and destruction

 countability();
 ~countability();

private: // representation

 mutable size_t count;

private: // prevention

 countability(const countability &);
 countability &operator=
 (const countability &);
};

Notice that the manipulation functions are
const and that the count member itself is
mutable. This is because countability is not
a part of an object's abstract state: memory
management does not depend on the const-
ness or otherwise of an object. I won't include
the definitions of the member functions here
as you can probably guess them: increment,
decrement and return the current count,
respectively for the manipulation functions.
In a multithreaded environment you should
ensure that such read and write operations are
atomic.

So how do we make this class Countable? A
simple set of forwarding functions does the
job:
void acquire(const countability *ptr)
{
 if(ptr)
 {
 ptr->acquire();
 }
}

void release(const countability *ptr)
{

 Page 4

 Overload - Issue 25 - April 1998

 if(ptr)
 {
 ptr->release();
 }
}

size_t acquired(const countability *ptr)
{
 return ptr ? ptr->acquired() : 0;
}

template<class countability_derived>
void dispose
 (const countability_derived *ptr,
 const countability *)
{
 delete ptr;
}

Any type that now derives from
countability may now be used with
countable_ptr:
class example : public countability
{
 ...
};

void simple()
{
 countable_ptr<example> ptr(new
example);
 countable_ptr<example> qtr(ptr);
 // set ptr to point to null
 ptr.clear();
 // allocated object deleted when
 //qtr destructs
}

Runtime mixin

The challenge is to apply COUNTED BODY in
a non-intrusive fashion, such that there is no
overhead when an object is not counted. What
we would like to do is confer this capability
on a per object rather than on a per class
basis. Effectively we are after Countability on
any object, i.e. anything pointed to by a void
*! It goes without saying that void is
perhaps the least committed of any type.

The forces to resolve on this are quite
interesting, to say the least. Interesting, but
not insurmountable. Given that the class of a
runtime object cannot change dynamically in
any well defined manner, and the layout of
the object must be fixed, we have to find a
new place and time to add the counting state.
The fact that this must be added only on heap
creation suggests the following solution:
struct countable_new;

extern const countable_new countable;

void *operator new
 (size_t, const countable_new &);
void operator delete
 (void *, const countable_new &);

We have overloaded operator new with a
dummy argument to distinguish it from the
regular global operator new. This is
comparable to the use of the
std::nothrow_t type and
std::nothrow object in the standard
library. The placement operator delete
is there to perform any tidy up in the event of
failed construction. Note that this is not yet
supported on all that many compilers.

The result of a new expression using
countable is an object allocated on the
heap that has a header block that holds the
count, i.e. we have extended the object by
prefixing it. We can provide a couple of
features in an anonymous namespace (not
shown) in the implementation file for for
supporting the count and its access from a
raw pointer:
struct count
{
 size_t value;
};

count *header(const void *ptr)
{
 return const_cast<count *>
 (static_cast<const count *>(ptr) - 1);
}

An important constraint to observe here is the
alignment of count should be such that it is
suitably aligned for any type. For the
definition shown this will be the case on
almost all platforms. However, you may need
to add a padding member for those that don't,
e.g. using an anonymous union to coalign
count and the most aligned type.
Unfortunately, there is no portable way of
specifying this such that the minimum
alignment is also observed – this is a common
problem when specifying your own allocators
that do not directly use the results of either
new or malloc.

Again, note that the count is not considered to
be a part of the logical state of the object, and

 Page 5

 Overload - Issue 25 - April 1998

hence the conversion from const to non-
const – count is in effect a mutable
type.

The allocator functions themselves are fairly
straightforward:

void *operator new
 (size_t size, const countable_new &)
{
 count *allocated = static_cast<count *>
 (::operator new(sizeof(count) + size));
 // initialise the header
 *allocated = count();
 // adjust result to point to the body
 return allocated + 1;
}

void operator delete
 (void *ptr, const countable_new &)
{
 ::operator delete(header(ptr));
}

Given a correctly allocated header, we now
need the Countable functions to operate on
const void * to complete the picture:
void acquire(const void *ptr)
{
 if(ptr)
 {
 ++header(ptr)->value;
 }
}

void release(const void *ptr)
{
 if(ptr)
 {
 --header(ptr)->value;
 }
}

size_t acquired(const void *ptr)
{
 return ptr ? header(ptr)->value : 0;
}

template<typename countable_type>
void dispose(const countable_type *ptr,
const void *)
{
 ptr->~countable_type();
 operator delete(
 const_cast<countable_type *>(ptr),
 countable);
}

The most complex of these is the dispose
function that must ensure that the correct type
is destructed and also that the memory is
collected from the correct offset. It uses the

value and type of first argument to perform
this correctly, and the second argument
merely acts as a strategy selector, i.e. the use
of const void * distinguishes it from the
earlier dispose shown for const
countability *.

Getting smarter

Now that we have a way of adding
countability at creation for objects of any
type, what extra is needed to make this work
with the countable_ptr we defined
earlier? Good news: nothing!
class example
{
 ...
};

void simple()
{
 countable_ptr<example>
 ptr(new(countable) example);
 countable_ptr<example> qtr(ptr);
 // set ptr to point to null
 ptr.clear();
} // allocated object deleted when qtr
destructs

The new(countable) expression defines
a different policy for allocation and
deallocation and, in common with other
allocators, any attempt to mix your allocation
policies, e.g. call delete on an object
allocated with new(countable), results in
undefined behaviour. This is similar to what
happens when you mix new[] with delete
or malloc with delete. The whole point
of Countable conformance is that Countable
objects are used with countable_ptr, and
this ensures the correct use.

However, accidents will happen, and
inevitably you may forget to allocate using
new(countable) and instead use new.
This error and others can be detected in most
cases by extending the code shown here to
add a check member to the count, validating
the check on every access. A benefit of
ensuring clear separation between header and
implementation source files means that you
can introduce a checking version of this
allocator without having to recompile your
code.

 Page 6

 Overload - Issue 25 - April 1998

Conclusion

There are two key concepts that this article
has introduced:

The use of a generic requirements based
approach to simplify and adapt the use of the
COUNTED BODY pattern.

The ability, through control of allocation, to
dynamically and non-intrusively add
capabilities to fixed types using the RUNTIME
MIXIN pattern.

The application of the two together gives rise
to a new variant of the essential COUNTED
BODY pattern, UNINTRUSIVE COUNTED BODY.
You can take this theme even further and
contrive a simple garbage collection system
for C++.

The code for countable_ptr,
countability, and the countable
new are included on the ACCU web site, and
next month's disk.

Kevlin Henney
kevlin@acm.org

counted_ptr<type>
By Jon Jagger

Introduction

In my previous article I introduced the
general idea of a pointer class. This time
I’m going to focus on a specific pointer. A
counted pointer. Or to be more specific,
what is often called a detached counted
pointer [1,2]. Counted pointers are the
things that do reference counting. The idea
behind reference counting is very simple.
I’ll use string as my example. Suppose two
string objects exist and happen to contain
the same value.
void peri()
{
 // string::string(const char
*literal)
 string theory("hello");

 // string::string(const string &rhs)
 string vest(theory);
}

The question is can theory and vest share
the state that represents what after all is a
common value. Clearly they can, the issue is
what are the consequences of this sharing.

Naïve and broken
class string
{
public:
 string(const char *literal);
 string(const string &rhs);
 string &operator=(const string &rhs
);
 ~string();
 char &operator[](size_t index);
 ...

private: // state
 char *rep;
};

string::string(const char *literal)
 : rep(new char[strlen(literal) + 1])
{
 strcpy(rep, literal);
}

string::string(const string &rhs)
 : rep(rhs.rep)
{
 // empty
}

string &string::operator=(const string
&rhs)
{
 rep = rhs.rep;
 return *this;
}

string::~string()
{
 delete rep;
}

char &string::operator[](size_t index
)
{
 return rep[index];
}

The first consequence of naive sharing is
that it breaks the Law of Least
Astonishment. If I change theory I do not
expect vest to change and when it does I'm
more than a little annoyed.
// theory == "Jello"
theory[0] = 'J';

// !!! prints Jello
cout << vest << endl;

There are various ways to solve this. For
example a copy on write pointer, which I'll
look at in another pointer article.

 Page 7

mailto:kevlin@acm.org

 Overload - Issue 25 - April 1998

 Page 8

The second consequence of sharing is that it
introduces an associative relationship. Or to
be blunt a pointer. theory and vest now hold
a pointer to, and thus share, the state that
represents the value "hello". Whenever we
have an associative relationship we are
implicitly talking about separate objects
with separate lifetimes. We must somehow
manage the shared relationship. Custody.
The naïve code above is fatally flawed
because it utterly fails to manage the shared
relationship. Theory and vest share the same
scope; the string destructor will be called
twice at the end of the peri function and the
code will do a double deletion. The
alternative of making the destructor empty
is no good either. This will just cause a
memory leak. A solution to this problem is
to introduce extra information which is used
to manage the shared relationship. A
reference count.

The Basic Idea

The extra information required is simply the
number of objects that are participating in
the sharing. If you think about it you'll
quickly realise that this number must also be
shared. Here's a first cut at a working
version of string.
namespace accu
{
 class string
 {
 public:
 ...
 private:
 char *rep;
 int *count;
 };
}

The plain constructor allocates some
memory to hold a replica of the literal, and
some more memory to hold the shared
reference count. It initialises the count to
one to indicate that it (the object that the
constructor is constructing) does not share
the state with any other string objects. Not
yet.
namespace accu
{
 string::string(const char *literal)
 : rep(new char[strlen(literal) +
1])
 , count(new int(1))

 {
 strpcy(rep, literal);
 }
}

The copy constructor simply makes two
pointer initialisations. In other words
shallow copies. Normally a shallow copy is
dangerous. However in this case the idea is
to do just that. It's not dangerous because we
have a count that is managing the sharing.
The vital line is the count increment.
namespace accu
{
 string::string(const string &rhs)
 : rep(rhs.rep), count(rhs.count)
 {
 ++*count;
 }
}

With this copy constructor then after...
string theory(“hello”);
string vest(theory);

...theory.rep and vest.rep both point to the
same shared state and, vitally, theory.count
and vest.count both point to the same shared
integer which holds the value two indicating
that two objects (theory and vest) are
sharing the state.

The destructor can now use the shared count
to determine whether it is the last object
referring to the state. If it is it must do the
deletions, if not it must decrement the count
since the string object that is dying holds
one of the references and it is, well, dying.
string::~string()
{
 if (--*count == 0)
 {
 delete rep;
 delete count;
 }
}

The copy assignment operator is basically
just a combination of the code in the
destructor plus the code in the copy
constructor. The self assignment trap is
handled by reordering the statements rather
than via an explicit (this != &rhs) test.
string &string::operator=(const string
&rhs)
{
 ++*rhs.count;

 Overload - Issue 25 - April 1998

 if (--*count == 0)
 {
 delete rep;
 delete count;
 }
 rep = rhs.rep;
 count = rhs.count;
 return *this;
}

counted_ptr<type>

Clearly there is a lot of code in this that is
generic and not specific to string. Let's
abstract string away as a template argument
to create counted_ptr<>. This will allow us
to rewrite string like this.
namespace accu
{
 class string
 {
 public:
 string(const char *literal);
 ...
 private:
 class body;
 counted_ptr<body> ptr;
 };
}

// accu/counted_ptr.hpp

#ifndef ACCU_COUNTED_PTR_INCLUDED
#define ACCU_COUNTED_PTR_INCLUDED

namespace accu
{
 template<typename type>
 class counted_ptr
 {
 public: // create/copy/destroy
 counted_ptr(type *p);
 counted_ptr(const counted_ptr &rhs
);
 counted_ptr &operator=
 (const counted_ptr &rhs
);
 ~counted_ptr();
 public: // access
 type *operator->() const;
 type &operator*() const;
 type *raw() const throw();
 private: // precondition for -> an *
 void check_not_null_ptr() const;
 private: // plumbing
 void increment() const;
 void decrement() const;
 private: // state
 type *ptr;
 int *count;
 };
}

//include-all compilation model
#include "accu/counted_ptr-
template.hpp"

// accu/counted_ptr-template.hpp

#if !defined ACCU_COUNTED_PTR_INCLUDED
\
 || defined
ACCU_COUNTED_PTR_TEMPLATE_INCLUDED
#error "include
<accu/counted_ptr.hpp>:"\
 "counted_ptr-template.hpp must not “\
 “be included directly"
#endif

#define
ACCU_COUNTED_PTR_TEMPLATE_INCLUDED
...
namespace accu // counted_ptr - cre-
ate/copy/destroy
{
 template<typename type>
 counted_ptr<type>::counted_ptr(type
*p)
 : ptr(p), count(new int(1))
 {
 // empty
 }

 template<typename type>
 counted_ptr<type>::counted_ptr(
 const counted_ptr &rhs
)
 : ptr(rhs.ptr), count(rhs.count)
 {
 increment();
 }

 template<typename type>
 counted_ptr<type> &
 counted_ptr<type>::operator=(
 const counted_ptr &rhs
)
 {
 rhs.increment();
 decrement(); // this IS
 ptr = rhs.ptr;// self-assignment
safe
 count = rhs.count;
 return *this;
 }

 template<typename type>
 counted_ptr<type>::~counted_ptr()
 {
 decrement();
 }
}

namespace accu // counted_ptr - access
{
 template<typename type>
 type *counted_ptr<type>::operatr->()

const
 {
 check_not_null_ptr();
 return ptr;
 }

 template<typename type>
 type &counted_ptr<type>::operator*()

 Page 9

 Overload - Issue 25 - April 1998

const
 {
 check_not_null_ptr();
 return *ptr;
 }

 template<typename type>
 type *counted_ptr<type>::raw()
 const
throw()
 {
 return ptr;
 }
}

// counted_ptr – preconditions
namespace accu

{
 template<typename type>
 void counted_ptr<type>::
 check_not_null_ptr()const
 {
 if (ptr == 0)
 {
 throw logic_error(
 "counted_ptr: null
pointer");
 }
 }
}

namespace accu // counted_ptr - plumb-
ing
{
 template<typename type>
 void counted_ptr<type>::
 increment() const
 {
 ++*count;
 }

 template<typename type>
 void counted_ptr<type>::
 decrement() const
 {
 if (--*count == 0)
 {
 delete ptr;
 delete count;
 }
 }
}

Belt and Braces

Let's take a look at some of the subtler
issues of counted_ptr that don't seem to be
discussed much in the C++ literature. The
first one is creating a full blown
reference_count class to replace the raw
integer pointer. This is what Barton and
Nackman do in their book [3]. It is a pity
they do not say why they do it. It concerns
the code inside decrement()

if (--*count == 0)
{
 delete ptr;
 delete count;
}

The question is what happens if the
destructor called via the delete ptr
expression throws an exception. The answer
is that the memory pointed to by count
won't be reclaimed. This is because count is
a raw pointer and not a fully constructed
class object. One way to solve this is simply
to delete the integer first...
if (--*count == 0)
{
 delete count;
 delete ptr;
}

However, it might be useful to create a
general reference_count class. There is also
an issue concerning the nature of ++ and --.
If you are working with multi-threading you
need to be sure that ++ and -- are atomic. So
let's create a reference_count class.
// accu/reference_count.hpp

namespace accu
{
 class reference_count
 {
 public: // create/copy/destroy
 reference_count();
 reference_count(
 const reference_count &rhs
);
 reference_count &operator=(
 const reference_count &rhs
);
 ~reference_count();
 public: // query
 bool is_unique() const;
 private: // plumbing
 void increment() const;
 void decrement() const;
 private: // state
 int *count;
 };
}

// accu/reference_count.cpp

namespace accu
{
 reference_count::reference_count()
 : count(new int(1))
 {
 // empty
 }

 reference_count::reference_count

 Page 10

 Overload - Issue 25 - April 1998

 (const reference_count &rhs
)
 : count(rhs.count)
 {
 increment();
 }

 reference_count &
reference_count::operator=
 (const reference_count &rhs
)
{
 rhs.increment();
 decrement(); // this IS self-
 count = rhs.count;// assignment safe
 return *this;
}

 reference_count::~reference_count()
 {
 decrement();
 }
}

namespace accu
{
 bool reference_count::is_unique()
const
 {
 return *count == 1;
 }
}

namespace accu
{
 void reference_count::increment()
const
 {
 ++*count;
 }

 void reference_count::decrement()
const
 {
 if (--*count == 0)
 {
 delete count;
 }
 }
}

With this class counted_ptr simplifies
somewhat.
// accu/counted_ptr.hpp
. . .
namespace accu
{
 class reference_count;

 template<typename type>
 class counted_ptr
 {
 public:
 counted_ptr(type *p);
 // default copy constructor
 counted_ptr &operator=(
 const counted_ptr &rhs
);

 ~counted_ptr();
 public:
 // ...
 private:
 type *ptr;
 reference_count count;
 };
}

// accu/counted_ptr-template.hpp
. . .
namespace accu // counted_ptr - cre-
ate/copy/destroy
{
 template<typename type>
 counted_ptr<type>::counted_ptr(type
*p)
 : ptr(p), count()
 {
 // empty
 }

 template<typename type>
 counted_ptr<type> &
 counted_ptr<type>::
 operator=(const counted_ptr &rhs)
 {
 if (this != &rhs)
 {
 if (count.is_unique())
 {
 delete ptr;
 }
 ptr = rhs.ptr;
 count = rhs.count;
 }
 return *this;
 }

 template<typename type>
 counted_ptr<type>::~counted_ptr()
 {
 if (count.is_unique())
 {
 delete ptr;
 }
 }
}

Continuing the theme of exception safety,
let's look at the constructor for counted_ptr.
A typical use will be something like...
namespace accu
{
 string::string(const char *literal)
 : ptr(new body(literal))
 {
 // empty
 }
}

Now ptr inside counted_ptr<> is a raw
pointer. That means if the reference_count
constructor throws an exception (which it
could) we will have a resource leak because
the argument to the counted_ptr constructor

 Page 11

 Overload - Issue 25 - April 1998

was a raw pointer created via the new
body(literal) expression. I've thought about
this and I can't see an elegant solution. The
best I can come up with is to split off the
initialisation of the reference_count into a
separate method. Like this...
namespace accu
{
 template<typename type>
 counted_ptr<type>::counted_ptr(type
*p)
 : ptr(p), count()
 {
 auto_ptr<type> resource(p);
 count.initialise();
 resource.reset(0);
 }
}

namespace accu
{
 class reference_count
 {
 public:
 reference_count() throw();
 void initialise();
 private:
 int *count;
 };
}

namespace accu
{
 reference_count::
 reference_count() throw()
 : count(0)
 {
 // empty
 }

 void reference_count::initialise()
 {
 count = new int(1);
 }
}

If anyone can see a "better" solution I'd
appreciate an email.

Final Polish

Now that we have a nicely separated
reference_count into a new class we have
the opportunity of making the integer type a
template parameter.
namespace accu
{
 template<typename integer>
 class reference_count;

 template<typename type,
 typename integer =
int>
 class counted_ptr

 {
 public:
 // ...
 private:
 type *ptr;
 reference_count<integer> count;
 };
};

namespace accu
{
 template<typename integer>
 class reference_count
 {
 public:
 // ...
 private:
 integer *count;
 };
}

Remembering the problems hinted at with
++ and -- and multithreading you could
create a refence_count class based on an
atomic integer for example.
class atomic_integer
{
public:
 // ...
 atomic_integer &operator++();
 const atomic_integer operator++(int);
 atomic_integer &operator--();
 const atomic_integer operator--(int);
 // ...
};

Or perhaps an integer with a limited range.
For example one where an attempt to
decrement zero to minus one would cause
an exception.

That's almost it for now. There is one
thought I'll leave you with though. Right at
the very start I declared operator[](size_t
index) inside the string definition. How does
this sit with the reference_counting?
string theory("hello");
string vest(theory);
theory[0] = 'J';
cout << vest << endl; // must print
"hello" not "jello"

Errata

To finish I'd like to correct a serious bug
that crept into my previous article. Then, as
now I used the include-all model for
template compilation. In particular in the
file accu/pointer-template.hpp I wrote this
namespace // unnamed

 Page 12

 Overload - Issue 25 - April 1998

{
 template<typename type>
 void check_not_null(type *ptr)
 {
 …
 }
}

My motivation for not making this a method
of pointer<type> was reasonable enough: to
keep the interface of pointer<type> “clean”.
However, thanks to the include-all template
compilation model, each translation unit
that includes this file will get its own copy
of the check_not_null function and each
copy will live in its own unnamable
namespace. This will violate the One
Definition Rule. My thanks to Kevlin for
spotting this.

The code from this article is available on the
ACCU Overload web pages.

Jon Jagger
jjagger@qatraining.com

References (also counted 1,2,3 :-)

1. Ruminations on C++, Andrew Koenig
and Barbara Moo, Addison Wesley,
ISBN 0-201-4233-1, Chapter 7.
Handles: Part 2. Page 67.

2. Scientific and Engineering C++, John
Barton and Lee Nackman, Addison
Wesley, ISBN 0-201-53393-6, Chapter
14 Pointer Classes, page 419

3. The C++ Programming Language, 3rd
edition, Bjarne Stroustrup, Addison
Wesley, ISBN 0-201-88954-4, 25.7
Handle Classes, page 782.

UML – Parameterised Classes
(Templates) and Utilities

By Richard Blundell

Introduction

So far we have covered a number of
commonly-used areas of the Unified
Modelling Language. We have discussed
using the UML for designing and
documenting classes and objects, and
patterns as collaborations of classes, in

static structure diagrams. We have also
looked at ways of representing the dynamic
behaviour of a single class or object in a
state-transition diagram. Rather than
continue with other techniques for depicting
dynamic behaviour, I shall turn our attention
this time to templates (which are called
parameterised classes in UML parlance)
and utilities (used to deal with ‘global’
functions). Both of these can be used on
static structure diagrams. I shall also
mention the use of dependencies, which are
used on a number of different types of
diagram.

Parameterised Classes

Templates are a facility to represent classes
or functions at an additional level of
abstraction. They are commonly used in
(although not limited to) collection classes,
because this is a common domain where
you can easily abstract the behaviour of the
container and the operations you wish to
perform on it without knowledge of the
underlying data type. You can consider a
linked list class that holds integers and a
linked list class that holds strings. A list
template allows you to code the basic
functionality of a list without worrying
about the type of variable that it will hold.
Later, this template can be instantiated to
generate automatically a list class that holds
integers, strings or whatever. In the UML,
template classes are known as
parameterised classes, because they define
templates for classes that require one or
more parameters before they become real
classes that can be used in a system.

Let us look at the list template from the C++
standard library (I have omitted the data
members and all but the most-used
methods):
template <typename T, class A =
allocator<T> >
class list
{
 public:
 explicit list(const A& al = A());
 iterator begin();
 iterator end();
 size_type size() const;
 bool empty() const;
 void push_front(const T& x);

 Page 13

 Overload - Issue 25 - April 1998

 Page 14

 void pop_front();
 void push_back(const T& x);
 void pop_back();
 iterator insert(iterator it,
 const T& x = T());
 iterator erase(iterator it);
 void sort();
 void reverse();
 // etc...
};

This template class is represented using
UML notation in figure 1. Parameterised
classes are shown using a normal
rectangular class symbol, but with a dotted
box at the top right that holds the
parameters for the class, in our case, the
value type T, and the (optional) allocator
class A.

The use of default template parameters is
not shown in the UML 1.1 Notation Guide.
I am not sure if this is an intentional
omission or an oversight, because as far as I
can see the semantics for template
parameters are the same as for the
parameters of operations. If so, then the
syntax I have shown above should be OK.

list

+ list (al : const A & = A()
+ begin () : iterator
+ end () : iterator
+ size () : size_type
+ empty () : bool

T, A = allocator<T>

+ push_back (x : const T &) : void
+ pop_back () : void
+ insert (it : iterator, x : const T & = T) : iterator
+ erase (it : iterator) : iterator

Figure 1 – The list template from the
standard library, with attributes and some
operations suppressed.

It is worth remembering that the free
parameters in a parameterised class need not
be types, but may be values as well, or a
mixture of types and values. Although
types are the most common kind of template
parameter, integers and other values are
occasionally used. I’m not aware of many
cases of this in the standard library, but
Microsoft’s Active Template Library (ATL)
uses these quite a lot, with integer and
pointer template parameters occurring with
some frequency.

To show non-type parameters in action,
figure 2 depicts a class that Kevlin Henney
described in an earlier Overload article on
templates [1]. His template involved a
struct with a single static data member that
referenced a recursively-instantiated version
of its own containing templatised struct!
The result was a compile-time constant that
was equal to x raised to the power of y. The
template had two free integer parameters. I
have shown the implementation in a note for
those who do not have access to the original
reference. I have also seen references to
arrays with in-built size checking that use
integers as template parameters (also, the
ATL contains a fixed-size array template
called CComUnkArray, for example),
although I don’t know how genuinely useful
such constructs are in practice.

power
+ value : const long

value = exponent == 0 ? 1 :
 radix * power<radix, exponent - 1>::value

radix : long
exponent : long

Figure 2 – Kevlin’s circular template, using
parameterisation on integer values!

Stereotypes – a digression

Before we get to utilities, I should mention
the basic extension mechanisms of the
UML, because we will require one of them
next. If the UML were too complex, no one
would ever learn it all, or enough of it, and
so no one would use it. If it were too
simplistic, then it would not be sufficiently
powerful to be of much use in anything but
the most straightforward systems. The
result is that the UML has built-in support
for quite a wide range of concepts, but also
possesses a number of techniques to allow it
to be consistently extended when the need
arises. The three main methods, or
extensibility mechanisms as they are often
called, are constraints, tagged values and
stereotypes. I shall only discuss the latter at

 Overload - Issue 25 - April 1998

the moment – the others can wait for
another time.

Stereotypes are modelling elements that are,
in a sense, specialised or derived forms of
existing elements. Take an existing
element, and add a stereotype symbol to it,
and it becomes a refined version with
additional properties and nuances that
distinguish it from the original. A number
of stereotypes are predefined by the UML,
but new ones can be minted as and when the
need arises. (Care should, of course, be
exercised because the essential
communication enabled by the UML will
break down if no one knows what your 57
new stereotypes mean!)

A stereotype symbol consists of a keyword
enclosed in guillmets like this: «wibble».
The keyword names the new stereotype that
you have created, and it is assumed that the
extended features of this new entity are
documented somewhere accessible. I will
only be using pre-defined stereotypes here,
but the option of creating your own exists,
as long as you can justify this on the
grounds that the existing semantics of the
UML could not easily cover your new case.
[End of digression!]

Utilities

Sometimes you may find that you have a
number of static functions that are related in
operation or task, but do not seem to belong
to any of your existing classes. You may
additionally have some static attributes
(usually constants) that may be related to
these functions. There are a number of
reasons why these they may not seem to fit
in anywhere:

First, you may not have analysed your
problem domain accurately enough (or you
may be insufficiently familiar with it) so
that you cannot work out where the
functions belong. Perhaps they seem to
relate to two or more classes and you can’t
decide which, if any, is the ‘correct’ one.

Second, you may have a function that,
although closely related to a particular class,

cannot be made a class member for
language reasons. Examples of this include
things like overloaded operator functions,
which (in C++) often need to be made
friends of the class so that they can work
with implicit conversions to either of their
arguments (e.g. operator+(...) for strings or
complex numbers).

Third, you may wish to preserve the
‘calling’ syntax of a function from another
domain. For example, the sin method in
Java could have been made a member of the
Number or Double classes, but then
programmers would need to write code of
the form: y = x.sin(), rather than the more
familiar and natural style with the parameter
on the right: y = sin(x) (see fig. ???).

A utility can be used to ‘package’ these
static functions and data together into a
single entity. A utility is a special type of
class, and is denoted using the usual class
rectangle modified with the stereotype
«utility». This stereotype symbol is
displayed at the top of the name
compartment of the class, just above the
class name, as shown in figure 3. Because
you cannot have an instance of this class, all
attributes and operations within it are
assumed to be static. A utility can be
implemented in C++ using either a class or
a namespace.

An example of a utility is the Math class in
Java. This class has a number of
mathematical functions and constants
packaged within it. Packaging these
functions up avoids the problems of
polluting the global namespace, especially
because many of the functions have short
common names. To call one of these
methods in Java, you need to prefix the
function name with Math (so you call
Math.sin(x), or Math.sqrt(y), for example).
The Math class is illustrated in figure 3.
Note that the attributes E and PI are
declared final in the source.

 Page 15

 Overload - Issue 25 - April 1998

 Page 16

Math
+ E : double
+ PI : double
+ sin (x : double) : double
+ log (x : double) : double
+ abs (x : double) : double
+ abs (i : int) : int
+ max (a : double, b : double) : double

«utility»

Figure 3 - An excerpt from the Java Math
utility, showing constant attributes and
static methods.

Parameterised Utilities

There is no reason, of course, why you can’t
have a parameterised utility class. Such a
class would be a collection of (related) static
functions with one or more free types that
have yet to be specified. We could
therefore define a utility class that contains
the common min and max template
functions as shown in figure 4. Because
you cannot instantiate it, the functions in a
parameterised utility are template functions.
The C++ compiler will automatically bind
the free parameters (and hence instantiate
the template function) when you call one of
the utility functions.

ranges
+ min (a : T, b : T) : T
+ max (a : T, b : T) : T

«utility»
T

Figure 4 - A parameterised utility class.

Dependencies

An apparently unrelated concept is that of
dependencies, but we shall see how these
are used with parameterised classes below.
Dependencies show what you might expect
– relationships in which one entity depends
upon another entity in some way. A
dependency is shown as a dashed arrow
from the dependent element to the element
it depends upon (i.e. from the client to the
server, if you like). The nature of the
dependency is not necessarily specified,
although a number of predefined types have

been defined (including «bind» (see below),
«refines», «instantiates», «uses», «calls»,
«friend», «becomes» and «supports»).
Dependencies can denote relationships such
as a source-code dependency, if you are
interested in minimising your build time, or
an object dependency if one object uses the
services of another. Because dependencies
are quite a general concept, they can be used
in many different ways, and on many
different types of UML diagram. Don’t
forget that the UML has been designed to be
quite a generalised modelling language, and
is not necessarily limited to software
development.1 You can sit down and work
out dependency graphs for many different
problem domains, and doing so can often
help you to determine what are the really
fundamental variables in your system upon
which all else ultimately depends. Figure 5
shows a dependency diagram from a
distinctly non-software field!

profits

sales

costs

volume

unit cost

advertising

salaries

Figure 5 – A simple network of financial
and non-financial entities with some
hypothetical dependencies.

Instantiating Parameterised Classes

So, how do we actually use a parameterised
class once we have designed it? Well we
need to instantiate it by binding the free
parameters of the class to actual types and
values. There are two syntaxes for this.
Either you can use the C++ angle-bracketed
style syntax of template instantiation and
draw a class with the name template<arg,
arg, ...>. Alternatively you can draw a

1 To quote from the UML specification, the
UML “is a language for specifying, visual-
izing, constructing, and documenting the
artifacts of software systems, as well as for
business modelling and other non-software
systems.” (sic, but italics added)

 Overload - Issue 25 - April 1998

Summary dependency arrow, from the instance to the
parameterised class, labelled with the
stereotype «bind», which binds the values
given to the free parameters of the class.
Both of these forms are shown in figure 6.

We now know how to document templates
using the UML notation, and how to tidy up
static functions into related groups called
utilities in order to avoid namespace
pollution. We have also seen how
dependencies are denoted and some
examples of how they are used. We still
have a number of standard UML diagrams
to cover, including diagrams to show
detailed dynamic behaviour for collections
of classes, as well as component and
deployment diagrams that are concerned
with the physical location and arrangement
of, and relationships between, source and
compiled software modules. I shall start to
cover some of these next time.

list

list<string> StringList

MyContainer MyContainer

T, A = allocator<T>

«bind» (string)

Figure 6 – Two ways to instantiate a
parameterised class. The C++-style
method on the left uses an unnamed
temporary from which MyContainer is then
derived. The second method on the right
explicitly binds the type to the free
parameter to create the intermediate
StringList class

Richard Blundell

References

1. Henney, Kevlin, /tmp/late/* Generating
constants with templates, Overload 11 pp
36-37

The Draft International C++ Standard

(Almost) No Casting Vote
Standard’s Report

By Francis Glassborow

The recent meeting of WG21 & X3J16 in
Sofia Antipolis (a few miles NW of Nice)
was unusual to say the least. We always
knew that this would be a relatively quiet
meeting at which we looked forward and
planned what to do next. In the event we
were even further constrained by the
prevarication of ISO who had yet to
distribute the FDIS for vote by National
Bodies. This meant that we were
effectively unable to commit to anything.
None-the-less the meeting was useful.

For those that have never been there, the
Provence area of Southern France is typified
by a lack of urgency and somewhat
irrational plumbing and electrical systems.
It took me several minutes to unravel the

peculiarities of the switches in my hotel
room (I even checked the bulbs to make
sure they were not broken. I will leave
descriptions of the plumbing till I share a
pint with you in the local bar. It was not
bad (in fact finding a clean, flushing public
toilet half way up a mountain village was a
welcome surprise) just inconsistent and
sometimes more suited to Disneyland.

When eight of us decided to eat in the hotel
on Saturday night we found ourselves
having to search for staff in the restaurant.
We probably felt that the couple of hours
for that meal was leisurely but later
experience suggested that we had bolted our
meal by local standards. Sunday lunch in a
pleasant square in Vence took something
like three hours. Just as well the company
was good. Latter that day I reflected that
one of the particularly enjoyable things
about ISO Standards meetings is the wide
range of cultures involved. I should add
that the a surprisingly large number of those

 Page 17

 Overload - Issue 25 - April 1998

attending C++ meetings are far from being
single minded programming nerds. These
are great people to be with and the sad thing
about completing the C++ Standard is that
quite a few will drop out.

A combination of priorities, injuries, job
changes and accidents had severely reduced
the attendance this time. Sean Corfield had
had an accident that had prevented him from
travelling and Steve Rumsby (one of the
UK's outstanding experts) has changed his
job with the result that he can no longer
attend international meetings. That left me
to be elevated to Head of Delegation and
Principle UK Expert - just as well that there
was little cause for technical expertise.
Somehow I found myself shanghaied by
WG21 into forming the drafting committee
along with Herb Sutter. When I objected on
the grounds that I had no experience I was
told not to worry because there was unlikely
to be any motions to draft. Actually there
was one but it proved to be fairly easy and
Herb did it by himself.

By now you may wonder what we actually
did. Well there were a few things.

Possibly the most significant in the long run
was the agreement to hold at least one
meeting each year at the same place and
approximately the same time as
WG14+X3J11 (responsible for C). The idea
being that interested people could attend
relevant parts of both sets of meetings.
More importantly it would provide an
opportunity for informal face to face
meetings between those who often have
very different views as to the desirability
and future of C and C++. Many members
from both committees have been so
involved with a specific language that they
have lacked the time to track developments
in the other. The main problem that we can
foresee with our plans is that both groups
include their share of bigots that view the
other language with disdain as being
inspired by the devil. Hopefully the sane
majority and the more tolerant specialists
will act as oil and we will not finish up with
blood on the floor.

The first of these ‘collocated meetings’ will
be somewhere in Silicon Valley, hosted by
SGI from 5th-9th October this year. Strictly
speaking the C++ meeting will only be the
last three days (Tom Plum, our liaison with
C had found it difficult to get the C
committees to accept a five-day C++
meeting alongside theirs. In the event we
agreed that the first two days would be used
for technical presentations which are not
part of our formal agendas and so
individuals could decide whether they
wanted to attend the whole five days or only
for three of them.

The next ‘collocated’ meeting will be in
Hawaii in October '99. This one is planned
so that there will be an overlap of meeting
days rather than both meetings being
scheduled for exactly the same five days.
Before that meeting we will have a C++
meeting in Dublin in late March or early
April of ‘99. I gather that the C committees
have tentative plans to return to London in
the Summer of ‘99. This means that
European, and particularly UK ‘experts’
have an excellent opportunity to get fully
involved over the next couple of years (the
next C meeting is in Copenhagen, 22nd-
26th June).

The only substantial motion from WG21
relates to co-operation with C. C9X is
being developed under a mandate to avoid
gratuitous incompatibilities with C++.
Actually they seem to have done quite a
good job in keeping to this. What concerns
C++ is that C9X plans to introduce a
number of elements aimed at the world of
numerically intense programming (hitherto
the domain of (High Performance)
FORTRAN). What we do not want is for
ISO to require the next revision of C++ to
include all these additions to C. Remember
that C++ was required to be as close to
being a superset of C89 as possible without
seriously undermining its objectives. We do
not believe that it would be reasonable to
constrain the next revision of C++ to be
similarly related to C9X. I wonder if
readers have any opinions about this. If so

 Page 18

 Overload - Issue 25 - April 1998

please write in and share them with the rest
of us.

The other issues for the week concerned the
X3J16 part of the joint committees (though
other NB's might be interested.)

The first issue was advice on changes to
voting rights as regards NCITS (was ANSI)
committees. Currently representatives must
have attended two out of the last three
meetings. As the amount of work gets
progressively transferred to electronic
consultation meeting frequencies are
dropping. C++ currently plans on two per
year but other less active committees
anticipate dropping to only one per year.
This could result in interested parties being
disenfranchised by long qualification times
(only those who have qualified by physical
attendance can cast postal votes under the
current ANSI/NITS rules). X3J16 decided
to recommend that members should be
eligible for postal votes from the end of
their first physical attendance at a meeting.
However they would only retain those rights
so long as the actually attended at least one
physical meeting each year. In other words
you only get to vote if you have a
demonstrable ongoing commitment.

I wonder if the UK might consider how it
will respond to the growth of electronic
consultation.

The next issue was probably the most
important of the week. A Japanese
delegation presented a request for WG21 to
consider applying for a work item to
standardise Embedded C++. The reason
that we passed this to X3J16 for
consideration is that an application for a
new work item requires support from at
least five NBs. We needed to explore the
ramifications but clearly WG21
representatives could not vote on such an
issue without consulting with their NBs.

The major issue is one of resource usage.
As currently written C++ requires the
Standard C++ Library to support such
things as locales, alternative character sets
etc. This makes some parts of the library

very resource hungry. While this could be
managed by compile time switches, the
result would be the growth of proprietary
dialects subtly incompatible with each
other. We can also envision superb
development tools that could strip out the
fat. However we need to be realistic and
explore ways in which we can provide a
little more wriggle room (to use Bill
Plauger's phrase).

This problem with resources is not confined
to embedded systems and so at my
instigation we drafted a motion that
supported WG21 seeking a work item to
produce a technical report on resource
management in C++. Such a report would
keep everyone focused on keeping together.
I hope that sufficient other countries feel
this is a constructive approach to the
problem. I will certainly be urging the UK
to support it. The Japanese seemed happy.

Much of the rest of our time was spent
discussing mechanisms for handling defect
reports on C++. More about these when we
actually have a C++ Standard voted out by
the NBs. I will be arranging for a report on
this aspect for our Conference (11th & 12th
September). For now, you should know that
ACCU will be closely involved in this
process.

Finally

A couple of more light-hearted items from
the meeting. Bjarne Stroustrup and I were
sitting together during most of the meetings.
At one time his enthusiasm for my proposal
to overload the semicolon operator (see this
months issue of EXE Magazine, which you
should receive) was such that Steve
Clamage was heard to mildly rebuke the
two of us for lack of attention to the
business of the meeting. Quite like being
back at school.

On another occasion I quoted a proposed
price for something in pounds and added an
aside that it would convert according to the
normal commercial rules to the same
number of dollars. That almost brought the
house down. It was that kind of meeting.

 Page 19

 Overload - Issue 25 - April 1998

 Page 20

When we were discussing the future of
C++, I think I was ruled out of order when I
suggested that we should first tackle the
question ‘Has it got one?’

Just as well we did not have a meeting in
France earlier on because I do not think we
could have managed all the normal after
hours work alongside four-hour dinners (the
restaurants of Provence seem happy to fill
each table just once per evening).
Fortunately after hours was confined to
enjoying the excellent company.

I can thoroughly recommend visiting
Provence in the company of friends from
other cultures so that you avoid the British
habit of wanting to turn everywhere else
into little Britains. Though I ate fish while
there, chips never crossed my path.

Francis Glassborow

francis@robinton.co.uk

Generalizing Overloading for
C++2000

By Bjarne Stroustrup

Abstract

This paper outlines the proposal for
generalizing the overloading rules for
Standard C++ that is expected to become part
of the next revision of the standard. The focus
is on general ideas rather than technical
details (which can be found in AT&T Labs
Technical Report no. 42, April 1,1998).

Introduction

With the acceptance of the ISO C++ standard,
the time has come to consider new directions
for the C++ language and to revise the
facilities already provided to make them more
complete and consistent.

A good example of a current facility that can
be generalized into something much more
powerful and useful is overloading. The aim
of overloading is to accurately reflect the
notations used in application areas. For
example, overloading of + and * allows us to
use the conventional notation for arithmetic
operations for a variety of data types such as
integers, floating point numbers (for built-in
types), complex numbers, and infinite
precision numbers (user-defined types). This
existing C++ facility can be generalized to
handle user-defined operators and overloaded
whitespace.

The facilities for defining new operators, such
as :::, <>, pow , and abs are described in a

companion paper [B. Stroustrup: "User-
defined operators for fun and profit,"
Overload. April, 1998].

Basically, this mechanism builds on
experience from Algol68 and ML to allow the
programmer to assign useful - and often
conventional - meaning to expressions such
as
 double d = z pow 2 + abs y;

and
 if (z <> ns:::2) // …

This facility is conceptually simple, type safe,
conventional, and very simple to implement.

Basic Whitespace Overloading

Here, I describe the more innovative and
powerful mechanism for overloading
whitespace. Consider x*y. In programming
languages (e.g. Fortran, Pascal, and C++),
this is the conventional notation for
multiplying two values. However,
mathematicians and physicists traditionally
do not use the operator *. Instead they use
simple juxtaposition to indicate
multiplication. That is, for variables x and y
of suitable types,
 x y

means multiply x by y.

This is simply achieved by overloading the
space operator for double-precision floating-
point values:
double operator (double d1, double d2)
{

 Overload - Issue 25 - April 1998

 return d1*d2;
}

Or - more explicitly - equivalently
double operator ' '(double d1, double d2)
{
 return d1*d2;
}

Given one of these definitions, a physicist can
use his (or her) conventional notation rather
than the notation that has become
conventional among computer scientists:
double f(double x, double y, double z)
{
// using also a user-defined operator pow
 return a + x y pow z;
}

Clearly, the space operator has (by default) a
precedence lower than pow and higher than +.
The mechanism for assigning precedence to
user-defined operators is described in detail in
the companion article. The superscript
operator allows a further improvement:
double operator super(double d1, double
d2)
{
 return d1 pow d2;
}

double f(double x, double y, double z)
{
 // using user defined
 // superscript operator
 return a + x yz;
}

Naturally, this requires that overloading is
allowed for built-in types. However, to avoid
absurdities, it is (still) not allowed to provide
new meanings for the built-in operators for
built-in types. Thus, the language remains
extensible but not mutable. In fact,
generalizing the overloading rules allows us
to provide a unified clean framework for
built-in and user-defined types as well as for
built-in and user-defined operators. This
improvement furthermore opens the
opportunity to eliminate many of the anarchic
and error-prone traditional implicit
conversions inherited from C in the next
revision of the C++ standard.

Previous Work

The overloading mechanisms described here
are partly inspired by the pioneering work of
Bjørn Stavtrup [B. Stavtrup: "Overloading of
C++ Whitespace." JOOP. April, 1992].
However, Dr. Stavtrup failed to take object
types into account so that his system was far
less flexible than the mechanisms described
here. He also made the - not uncommon -
mistake of tying his innovative linguistic
mechanism up with a peculiar design
methodology and a proprietary toolset.

FFPL [Francois French and Paul Lawson :
"A language for Free Form Programming."
POPL. 1992] and White [G. LeBlanc:
"Whitespace overloading as a fundamental
language design principle." JIR. Vol. 24, no.
3, May 1994] were academic projects that
never had any users - except possibly their
designers. It is not clear that White was ever
implemented and Dr. Wimmelskaft of the
university of Horsens , Denmark, have
conjectured that it was, in fact,
unimplementable [Wimmelskaft: "A
refutation of White." JIR. Vol. 26, no. 4,
March 1996].

The overload mechanism described here
generalizes the built-in use of concatenation
for string literals in C and C++. In particular,
space is predefined to mean C-style string
concatenation. For example,
 "this is" "a single " "C-style string"

is by the lexical analyzer turned into
 "this is a single C-style string"

Thus whitespace between two C-style string
literals is interpreted as concatenation. The
facility was missing in K&R C, introduced
into ANSI C, and adopted by C++ in the
ARM (Ellis and Stroustrup: "The Annotated
C++ Reference Manual, " Addison-Wesley
1989).

Overloading Separate Forms of
Whitespace

There are of course several forms of
whitespace, such as space, tab, // comments,

 Page 21

 Overload - Issue 25 - April 1998

and /* */ comments. A comment is
considered a single whitespace character. For
example,
/* this comment is considered a single
 character for overloading purposes
*/

 It was soon discovered that it was essential to
be able to overload the different forms of
whitespace differently. For example, several
heavy users of whitespace overloading found
overloading of newline ('\n'), tab ('\t'), and
comments as the same arithmetic operator is
counterintuitive and error prone. Consider:
double z1 = x y; // obvious
double z2 = x

 y; // obscure
double z3 = x /* asking for trouble */ y;

In addition, different overloading of different
whitespace characters can be used to mirror
conventional two-dimensional layout of
computations (see below).

Stavtrup claimed that it was important to
distinguish between a different number of
adjacent whitespace characters, but we did
not find that mechanism useful. In fact, we
determined it to be error-prone and omitted
for Standard C++.

Overloading Missing Whitespace

After some experimentation, it was
discovered that the overloading mechanism
described so far did not go far enough. When
using the mechanism, the physicists tended to
omit the space character and write
 xy

rather than
 x y

This problem persisted even after the
overloading rules had been clearly and
repeatedly explained. What was needed
wasn't just the ability to overload explicit use
of whitespace, but also implicit application.
This is easily achieved by modifying the
lexical analyzer to recognize
 xy

as the two tokens
 x y

when x and y are declared. The "missing
whitespace" between two identifiers are
assumed to be a space.

Deciding how to resolve the ambiguity that
arise for xy when x, y, and xy are all declared
was one of the hardest issues to resolve for
the whitespace overloading design.

One obvious alternative is to apply the "Max
Munch" rule (also known as the greedy
parsing rule) to this so that xy means the
single identifier xy rather than x y. However,
this has the unfortunate effect that the
declaration of xy can completely change the
meaning of a conforming program. That is,
adding "int xy;" to
 int x, y;
 // …
 int z = xy; // means x y

yields
 int x,y,xy;
 // …
 int z = xy; // means xy

when space is overloaded to mean
multiplication. It was therefore decided that
the "Max Munch" resolution was unsuitable
for large-scale programming.

Instead, it was decided to limit identifiers to a
single character, by default:
 // error: two-character identifier
 int xy;

This may seems Draconian at first. However,
since we now have the full Unicode character
set available, we don't actually need hard-to-
read long names. Such long names only make
code obscure by causing unpleasantly long
lines and unnatural line breaks. Multi-
character names are a relic of languages that
relied heavily on a global namespace and
encouraged overly-large scopes.

Mathematicians and physicists in particularly
appreciate the ability to use Greek letters:
 double β = ϕλ;

 Page 22

 Overload - Issue 25 - April 1998

This facility was also an instant success in
China and Japan where the Chinese character
set provides a much richer set of single
characters than does the various Latin
alphabets.

Less traditional symbols are also useful. For
example:
 // take my phone (•) off hook (•)
 •->•();

This example become even more natural
when - as is common - the whitespace
operator is overloaded to mean -> for the
telephone class:
class Phone
{
 // …
 Phone* operator ' ' ()
 { return this->operator->(); }
 void •(); // off-hook
 // …
};

 Phone •;

 // take phone (•) off hook (•)
 ••();

It is also common to overload newline to
mean application without arguments, that is
(), so that what used to be the long-winded
and ugly
 my_phone->off_hook();

becomes plain and simple
 ••;

Finally, the semicolon is most often
redundant as a statement terminator so the
grammar has been improved to make it
optional in most contexts. Thus, we get:
 ••

Extensive use of such special characters
together with imaginative and thoughtful use
of whitespace overloading has had an
immense impact on maintenance cost.

Should you feel the need for longer names -
for example, if you don't have a high-
resolution screen with a suitable large
character set available - you can explicitly

specify one using the multi-character
identifier operator $:
 // explicitly multi-character name
 double $xy = 0.0;
 double x, y;

 // xy times x times y
 double Φ = xy x y;

Naturally this is best avoided. For
compatibility, a $ as the first character of a
translation unit means that every identifier
can be implicitly multi-character. This has
proven immensely useful during transition
from the old to the new rules. As an
alternative to $ as the first character, the
header <> can be included:
 #include<>

Overloading \\ (double backslash) to mean
"everything before this is a comment" has
proven another useful transition tool. It
allows old-style and new-style code to
coexist:
 my_phone->off_hook(); // \\ ••

Given a new-style compiler, everything up
until the • is ignored whereas an old-style
compile ignores everything after the ;

Composite Operators

As described in the companion paper,
C++2000 adopts a variant of the overloading
of composite operators described in the
ARM. This implies that we can define the
meaning of
 x = a*b + c;

directly by a single
 operator = * + (Vector&, const Matrix&,
const Vector&, const Vector&);

rather than achieving this indirectly though
function objects as described in Stroustrup:
The C++ Programming Language (3rd
edition). Addison-Wesley 1997.

Naturally, a composite operator can contain
whitespace operators. For example,
 x = ab + c;

 Page 23

 Overload - Issue 25 - April 1998

 Page 24

can be handled by
 operator = ' ' + (Vector&, const
Matrix&, const Vector&, const Vector&);

where multiplication is as usual represented
by concatenation (missing whitespace). Some
people go further by representing addition by
newline to match the common convention of
listing numbers in a column before adding
them. Doing that we can define:
 operator = ' ' '\n' (Vector&, const
Matrix&, const Vector&, const Vector&);

to handle
 x = ab
 c; // old-style: x = a*b+c

This convention is not universally appreciated
and more experience is needed to estimate its
impact on maintainability.

Availability

The generalized overloading mechanism
described here has been in experimental use
for some time and it is expected that most
major C++ compiler vendors will ship it as an
integral part of new releases in the near
future. A preprocessor that implements the
facility for any current C++ implementation
can be freely downloaded from
http://www.research.att.com/~bs/whitespace.
html.

In addition to the overloading of missing
whitespace, etc., this distributed version
includes overloading based on the color of
identifiers. Due to the limitations of the
printing process used for this article, I cannot
give examples, but basically a red x is
obviously a different identifier to a green x.
This is most useful for making scope
differences obvious. For example, I use black
for keywords, red for global variables (as a
warning), blue for member names, and green
for local variables. In all, a given character
can be of one of 256 colors. Naturally, this
again reduces the need for multiple-character
identifiers while increasing readability. The
lack of universal availability of color printers

and problems of color blind programmers
caused me to leave this feature out of the
standard.

Current and Future Work

In preparation for standardization, formal
specifications of the overloading mechanism
in VDF and Z are being constructed. In
addition, a simplified teaching environment is
being constructed where operators such as *,
+, and -> have been eliminated in favor of
overloaded whitespace. Initial results
indicates that this immensely shortens the
time needed to learn C++ and should possibly
be compulsory for non-expert programmers.
A tool to automatically convert of old-style
programs to new-style programs is being
constructed; the inverse tool will not be
needed.

Naturally, whitespace overloading is
essentially language independent.
Consequently, we are looking for ways of
applying it uniformly across several
programming languages to achieve common
semantics. In addition, whitespace
overloading clearly fits the C9x effort to
support traditional numeric programming.
Consequently, I confidently predict that the
basic whitespace overloading mechanism will
be part of the revised C standard.

Finally, work is underway to extend the
character set, language syntax, and
overloading rules to take advantage of 3D
display devices. This will allow us to
naturally represent multiplication, addition,
and exponentiation as spatial displacements
along three different axis. Because this
project relies of the ability to fool the brain
into accepting a projected image as 3D and
because we don't take delivery of the 3D
projection device until next spring, this
project is usually referred to as "Project April
Fool."

Bjarne Stroustrup

AT&T Labs, Florham Park, NJ, USA

Whiteboard

 Overload - Issue 25 - April 1998

Irrational Behaviour
By Graham Jones

Having read “Rational Values Part 3” I would
like to respond to the Harpist’s comments
about implementation and interface. He
claims that I am confusing these. I don't think
so, but we do seem to have very different
ideas about what an interface is. My
definition of an interface of a class is
something like “everything the user needs to
know about the class in order to be able to use
it with confidence”.

Most programmers, suggest the Harpist, will
expect to be able to create a Rational from a
double, and particularly mentions
mathematical constants. I wonder what most
programmers would expect the following
code to do.
Rational x, e;
x = Rational(1.2);
e = Rational(exp(1));
cout << 5*x << " " << e*e << endl;

I think that the calculation of 5*x has three
main kinds of behaviour, depending on the
size of your ints and the precision of your
doubles: it may produce 6, some fraction
close to 6 with a huge denominator, or it may
throw an overflow exception. As for e*e, it's
too complex for me to analyse. Anyway, this
code is useless: no-one can use the Rational
class with confidence if they make rationals
out of doubles. There's no point in shielding
the user from the implementation details of
your class if you then expose the user to an
even lower level of implementation in
unpredictable ways. The point is not that the
Rational class fails to be of industrial
strength, but that the conversion to doubles
fails to provide any kind of behaviour that
could sensibly be documented. A while back,
in CVu, the Harpist said “Writing re-usable
code is harder than you think”. I’d like to re-
phrase that as “Separating implementation
from interface is harder than you think”.

The Harpist still seems to think that ints could
be replaced with BigInts without changing the
interface. Ignoring conversion from doubles,
this would cause major changes to the

interface: the exceptions that may be raised,
the memory used and the time taken, would
all be changed drastically. These can all affect
the way the user of the class must write his or
her program.

A few months ago I implemented the Playpen
class that the Harpist described in CVu.
According to the Harpist the class definition
was all I needed to know about. But when I
started to write code I found all sorts of things
which would affect the user of the class. Error
handling was one issue. For example: How
should the class behave if the user tried to
draw a point outside the Playpen? How
should operating system errors be reported?
Other things concerned the appearance of the
Playpen: there were several ways in which a
Playpen might appear different on different
machines (which would negate the point of
having the Playpen in the first place). Is the
origin top left or bottom left - or somewhere
else? Does updatepalette() affect the screen?
Will my RED^BLACK be the same colour as
yours? It is no exaggeration to say that I spent
more time examining Simon Wood's
implementation than writing mine, trying
(and almost certainly failing) to understand
how a Playpen should behave.

In the designs of both the Playpen and
Rational classes, the Harpist seems to be
assuming that “class interface equals class
definition”. I think this is wrong, and hope I
have explained why. If I thought this was an
issue that just applied to a couple of tutorial
classes, I wouldn't bother writing. However it
seems to me that too many authors of libraries
I have to use have a similar mindset. At first
sight the libraries present a nice clean
interface, and they certainly hide
implementation details in the sense that it is
very difficult for me to find out what they are.
But when I use them, all kinds of
undocumented and incomprehensible
behaviour leaks out from underneath. There
seem to be no controversy over the fact that
sorting and searching functions in the STL
expose the algorithms they use: everyone
seems to think this is an improvement over
qsort() and bsearch() where you could never
be quite sure what you were getting. Perhaps

 Page 25

 Overload - Issue 25 - April 1998

we should learn from that when designing our
own classes.

And finally: It might not sound like it from
some of the above, but I am grateful to the
Harpist for his many contributions to ACCU.
I for one hope that he spends most of his time
learning what to write about rather than
polishing his writing.

Graham Jones

Implementations & Interfaces
By The Harpist

One of the more serious problems with
computing is that we use the same terms with
such different meanings. When the
differences are gross it matters very little, but
when it comes to shades of grey we can all
finish up confused. Above you will find a
letter from Graham Jones in which he raises a
number of excellent points. In this article I
shall attempt to address these points.

One reason why I am happy to spend time
writing for ACCU publications is that I learn
much from the effort, and letters such as
Graham’s add considerable value. Let me go
back into the deep past and look at some of
the design criteria for C and contrast them
with those for Java. I promise you that this is
not a sidetrack.

TINSTAAFL

Portability and constancy over time is
probably one of the most challenging aspects
of language design. C (and in particular ISO
C) provides one concept of a language
interface. It introduced the concept of a
strictly conforming program as one that
would exhibit the same behaviour wherever it
was run. The requirements for strictly
conforming code are so demanding that it is
highly debatable that anyone has ever written
such a program, certainly any attempt to do
so requires a highly specialised approach to
code writing. C introduced a lesser
classification; that of a conforming program.
A conforming program is one that is accepted
by a conforming implementation. In simple
terms a conforming program does not exhibit

undefined behaviour. A footnote clarifies
that a conforming program may rely on non-
portable behaviour of a conforming
implementation. To learn more you need to
read clause 4 of ISO/IEC 9899-1990.

The idea was to allow compiler implementors
as much liberty as possible to get the best
from the hardware and operating systems that
they were writing for. For example a
program that opened a file called ‘LPT1’
should do something, but it would only
normally be on MSDOS based systems that
the result was to send data to a printer via an
MSDOS reserved file name. The major focus
was to support very efficient code generation
from C source code. The many traps that
inexperienced programmers fall into are the
price that is paid. Experienced programmers
can extract much of the critical data from the
required header files (such as limits.h).
Inexperienced programmers often assume that
all implementations will have the same range
of values for int, the same relationship
between signed and unsigned values etc. as
that of the first compiler they used. C trades
efficiency for consistency. It makes demands
on the professionalism of programmers that
academic languages such as Pascal, Modula 2
etc. forgo.

While C provides a programming interface
that is relatively reliable it does not ensure
uniform behaviour under all circumstances.
It sets limits within which variations may
occur. If you do not understand these limits
(and sadly, the overwhelming majority of
programmers do not) then your program will
behave surprisingly even if it is a conforming
program.

For example consider:
Enum
{
 controller = 0xEAF0,
 off = 0,
 on = 1
};

int main()
{
 char volatile * port = controller;
 do {
 if (*port >= 0) *port = on;
 else *port = off;
 }

 Page 26

 Overload - Issue 25 - April 1998

}

Assume that this program provides
thermostatic control. Its successful behaviour
certainly relies on the implementation of char.
If char is implemented as unsigned, *port will
always be greater than or equal to zero and
the heater will never be switched off. Of
course this is a ‘bad’ program that relies on a
gross characteristic of an implementation.
However that is not the point. What is the
result of the following program:
#include <stdio.h>
int main()
{
 int j = -27;
 printf(“%d”, j & 27);
 return 0;
}

It will (I believe) always produce a result.
Almost always it will produce the same result
but you would be seriously mistaken to
believe that it does not rely on
implementation defined behaviour. For those
that do not spot it, C allows at least three
different representations of negative integers
– 2’s complement, 1’s complement and sign
and value – and the result certainly depends
on which your system uses.

Turning briefly to Java: here the language
specification is deliberately much more
tightly drawn up. All implementations are
supposed to behave the same way. There is a
heavy price to pay for this consistency. You
cannot use anything that is not universally
available. I shuddered when I first came
across a class to handle a three-button mouse
in Java. Think about it, such code cannot run
correctly on an Apple Mac. You see, the
designers of Java forgot an essential element
of a universal language; you must include a
specification for the underlying hardware.
For Java to work as described you can only
use specified hardware. Your graphics must
be confined to the common subset of
resolution, palettes etc. that all hardware
running Java must support.

In a real sense a computer language
specification provides an interface between a
programmer and a computer. In general we

are fairly content with a language that
compiles everywhere and expect that that
guarantees that the resulting program
produces the same behaviour everywhere.
That latter belief is almost impossible to
fulfil.

Consider qsort() in C. The library
specification specifies exactly what you can
expect. In order to use it the programmer
must know how to call the function and what
parameters must be passed to it. It says
nothing about any performance guarantees or
resource requirements. Now Graham
maintains that C++ does better in the STL
because it exposes the algorithms it uses.
That is not so, nor should it be. What is true
of the STL is that certain extra constraints are
placed on its functions. There is no
requirement that any specific algorithm be
used for sorting, only that whatever is used
shall meet certain specified performance
requirements. Actually a new sorting
algorithm was developed recently that has a
demonstrably better performance than that
required by the STL sort specifications.
Nothing forbids implementors from using this
new algorithm even though its performance
will be different from earlier choices. Can
you imagine the howls of anguish if an
implementation was not allowed to provide a
‘better’ solution because that might result in
different ‘behaviour’ (performance or
resource requirements) from that of
competitors?

The most important lesson to learn about
interfaces is to recognise the limits of what
you have been guaranteed. The second
important feature is to recognise trade-offs.

Look at the STL containers. At first sight
programmers may wonder why they would
ever wish to use a deque rather than a vector
unless the capacity to add elements to the
beginning was important. vector trades
certain advantages (elements being in
contiguous address space, fast random access
etc.) for disadvantages (catastrophic
performance hits when the expansion of a
vector requires re-allocation of space, high
cost for inserting elements other than at the
end etc.).

 Page 27

 Overload - Issue 25 - April 1998

The question that can be posed is ‘is
performance part of the interface or part of
the implementation?’ Graham would answer
one way and I another. I think I understand
Graham’s viewpoint on this but I also think
that it means that it is impossible to change
the underlying implementation. Any such
change to a class would automatically result
in some form of performance change else
why bother. When I write my application for
a container so that it carefully confines itself
to the common interface between different
STL containers I do so precisely because I do
not consider performance to be part of the
implementation. I want to be able to select the
implementation that best meets my
requirements at that time. I want to be able to
change my mind at any time.

The Problem of Not Being Exact

Integer types have the advantage of providing
exact representations within specified limits
(I will get to BigInts in a moment). When we
implement them in C/C++ (and most other
languages) we also pay a price for efficient
arithmetic by allowing overflow and
underflow to go undetected. The usual
mechanism is to allow ‘wrap round’ of
values. Most of the time programmers are
happy to accept this price. The cost of
detecting overflow/underflow in integer
arithmetic is very high when we try to
implement it at high level. There is also a
high price if we elect to allow detection at the
hardware level. It is in the nature of the
representations we use for most systems that
underflow/overflow during an integer
computation often still produces the correct
answer. For example most 16-bit systems
will arrive at the correct answer for: (32000
+ 4000 – 5000) even though an intermediate
result has overflowed.

You may be wondering what I have against
BigInts (where these are an integer type
whose capacity is only limited by memory
resources). The problem is that they are
terribly inefficient. As the amount of storage
required by a value ebbs and flows memory is
being allocated and deallocated dynamically.
We can reduce the amount of re-allocation by
being more profligate with our resources

(generously allocating extra space against
future usage and being reluctant to release it
until absolutely necessary). In some
circumstances that is a price I will cheerfully
pay, but at other times I would hate both
frequent re-allocation and greedy use of
resources.

In my mind the designer of a Rational type
faces exactly the same kind of problems.
S/he wants a type that has well defined
general behaviour that can be refined by
implementation decisions as needed. There
will be a core of usage that will have
invariant behaviour but beyond that…

It may surprise some programmers to learn
just how much has to be sacrificed in the
conflict between accuracy and speed. Look at
the guarantees that C makes for floating point
values. Remember that these go in sort of
quantum leaps. There is a smallest increment
between values. You may ask what happens
when a calculation would result in an
intermediate value. Surely you will say, such
cases must result in one or other of the two
nearest representable values. Perfectly
reasonable and completely wrong. The
theory of computation shows that such a
requirement would place at least an order of
magnitude performance hit on all floating
point computations as compared to that we
get by allowing the result to be within two
‘quanta’ (either the nearest or next nearest
representable value). Almost universally
languages accept the lesser accuracy in
exchange for the greater speed.

Now let us turn to Graham’s example of
constructing a Rational from 1.2. He is
correct in saying that my interface says
nothing about the result. Given that 1.2
cannot be exactly represented in binary
notation with a finite number of bits we have
a problem. We know that we want a result of
6/5 but can we guarantee that we will get one.
More to the point, what guarantees can we
provide that any floating point number that
could be represented exactly as a Rational
within the range of numerators and
denominators available will in fact be so
represented? This is a difficult question and
one that the designer of the interface will

 Page 28

 Overload - Issue 25 - April 1998

 Page 29

need to discuss with a skilled implementor.
Clearly the interface designer wants to make
the best reasonable guarantee but this will
depend on many things. I think that a skilled
implementor should be able to provide some
pretty strong guarantees by using continued
fractions (one quality of these is that alternate
steps are too high and too low unless and
until an exact result is arrived at). But note
that this is deep in the domain of
implementation. The designer specifies an
interface for both the implementor and the
user. S/he negotiates specification details that
are acceptable to the user and achievable by
the implementor. These may vary from time
to time. The resulting program code still
compiles though it may do different things for
some corner cases. If you care you will need
to act, but mostly you will not. Note that
statement carefully. Mostly you will not care
about any change in behaviour but sometimes
you will. If you really care about that extra
quantum of accuracy when using floats you
will have to use a higher precision type. If
you care about overflow you will have to

check the range of the integer type you use.
If you want a practically unlimited range of
values you will have to sacrifice a great deal
of speed to get it via a BigInt type.

What I am saying is that a professional
programmer looking at a class interface can
and should ask what guarantees are being
given and at what price. You know that floats
are not exact representions so you know that
there may be a conversion problem. If it
matters you can check the full specification or
you can do the job yourself.

In the words of the master, ‘You should not
pay for what you do not use.’ Building
Rationals on top of BigInts straight off would
be a gross breach of that maxim.

I hope that Graham will agree that out of our
disagreement – alternative viewpoints – a
better understanding of the issues can arise.

The Harpist

Debuggable new and delete
Part Two

By Peter Pilgrim

In this second article I will present my
solution to debuggable C++ dynamic memory
allocation integrity.

Here is fresh recap [1]. The basic idea of heap
space integrity is to use an identification
method within the memory block itself. In
other words how do we find out if a block of
memory is valid heap space or not? [7] A
function allocates a block of heap memory
larger than the user requested, and divides
this memory block, say B, into three parts: the
prefix, the middle, and the suffix. Some magic
identifier bytes are written into the prefix, and
another set of magic bytes into the suffix.
Finally we simply return to the user a pointer
to the middle of the memory block .

The C++ language allows us to override the
default implementation of the ::new and
::delete operators. The ‘::’ denotes the
global scope of the identifiers. This important

hook enables the implementation of
debuggable global new & delete operators.
These operators respectively call functions,
which mark and unmark the memory
block. For example writing OVERL%AD
identifies the prefix of the memory block. The
string is reversed and a character is changed
for make up another identifier DA$LREVO,
which is written as the suffix.

The C++ language enables a developer to
take over the management of memory
allocation in such a way that it appears
omnipresent. Once we have defined a special
::new and ::delete operators, our
custom built functions will be linked against
other translation units. [3] For example
having written a debuggable new and delete
module called D. If we link D against
translation units U, V, and W. Any calls to
::new in either U, V, and W will refer to the
operator defined in D.

Let us look at the data structures for the
prefix and suffix parts of the memory block.
#define PREFIX_HEADER_SIZE
 sizeof(PrefixHeader)

 Overload - Issue 25 - April 1998

#define SUFFIX_HEADER_SIZE
 sizeof(SuffixHeader)

enum MemoryStatus {
 // Diagnose memory problems
 MEMORY_OK,// healthy memory!
 MEMORY_UNKNOWN,// unrecognised memory
 MEMORY_UPPERBOUND,// corrupted
 MEMORY_LOWERBOUND,// corrupted
 MEMORY_ALREADY_FREED // already freed
};

union Alignment {
 int a1;
 unsigned int a2;
 long a3;
 unsigned long a4;
 float a5;
 double a6;
 // maybe long double a7; // DEC Alpha
};

const int ALIGNMENT_SIZE =
sizeof(Alignment);

struct PrefixHeader
{
 // Store the size of the block.
 size_t size;
 // Special Identifier Magic.
 unsigned long magic_word;
 // Prefix identifier bytes.
 char ch[ALIGNMENT_SIZE];
 // alignment bytes.
 Alignment alignment;
};

struct SuffixHeader
{
 // Suffix identifier bytes.
 char ch[ALIGNMENT_SIZE];
};

The enumeration MemoryStatus is used in
the source code. It provides the status of the
memory block. I have improved upon the
original C version, which appeared in C Vu
[2], by using the union to get the best end- of-
structure alignment independent of the C++
compiler and the operating system. The end
of the PrefixHeader structure features
this union as a field member. Why do we
need to align the structure? It is simply for
portability reasons. We enforce the alignment
of the PrefixHeader data structure so that it
ends on a word boundary. If one thinks about
the memory block in terms of an array of
PrefixHeader elements, say P[N]. The
address of the first PrefixHeader record will
equal to &P[0], but the address of the
beginning of the second PrefixHeader
element &P[1] is actually exactly equal to

the address of the first byte of heap space that
user gets to use (void *B). In other words the
beginning of the middle section of the
allocated memory block B. For the sake of
repeating information that appeared in
Kernighan & Ritchie’s classic C
Book [6], C++ likewise does not mention
anything about the exact alignment of
memory returned from operator
::new(). Alignment of pointers returned
from operator ::new() is very much an
implementation issue, some architectures
(like Sun Microsystems Sparc RISC
microprocessor and the SunSoft C++
Compiler for SunOS 4.x) can support
misaligned data structures for which pointers
to non-word boundaries are not a problem. If
we assume that even if an architecture and
available compiler supports misalignment
then by definition it supports alignment.
Hence the forced alignment of the
PrefixHeader data structure.

Here's our alternative of operator
::new()
void * operator new(size_t size)
{
 PrefixHeader *ptr =
 _allocate_memory("new", size);
 if (ptr == 0) return (0);
 return (static_cast<void*>(ptr+1));
 // The same as ((void*) &ptr[1])
}

The implementation is fairly straight forward,
except for using a static cast to change the
type between the PrefixHeader * to the void *
type. Here are the rest of the global
operators new and delete functions:
void * operator new [] (size_t size)
{
 PrefixHeader * ptr =
 _allocate_memory("new []", size);
 if (ptr == 0) return (0);
 return (static_cast<void*>(ptr+1));
}

void operator delete(void *input_ptr)
{
 if (input_ptr == 0) return;
 PrefixHeader *ptr =
 (static_cast<PrefixHeader*>

 (input_ptr)) - 1;
 _deallocate_memory("delete", ptr);
}

void operator delete []
 (void *input_ptr)

 Page 30

 Overload - Issue 25 - April 1998

{
 if (input_ptr == 0) return;
 PrefixHeader *ptr =
 (static_cast<PrefixHeader*>

 (input_ptr)) - 1;
 _deallocate_memory("delete []",ptr);
}

These are, then, our replacement debuggable
global ::new and ::delete operators.
Notice that the code that allocates and
deallocates dynamic memory is shared
between the new operators likewise for the
delete operators:
PrefixHeader *_allocate_memory(
 const char * func_name,
 size_t size)
{
 // `malloc(0)' is unpredictable
 if (size == 0) size = 1;

 // Allocate memory with real size
incorporating the
 // prefix header record and suffix
record
 size_t real_size = PREFIX_HEADER_SIZE +
size + SUFFIX_HEADER_SIZE ;
 PrefixHeader *ptr =
(PrefixHeader*)malloc(real_size);

 while (ptr == 0)
 {
 // Malloc failed call the new handler
 // to try to free up memory or
 // terminate the application by
 // throwing an exception or calling
 // `abort()'
 (*_dbgnew_handler)();
 ptr = (PrefixHeader*)malloc(
real_size);
 }

 // Mark Prefix and Suffix Memory Block
 // and record the size
 ptr->size = size;
 ptr->magic_word = PREFIX_MAGIC_ID;
 mark_memory(ptr, size);

 // Mark the middle
 memset((void*)(ptr+1), 'U', size);

 return (ptr);
}

The allocator function follows the
conventional implementation of the new
operator (see [5]). It is no surprise that it calls
malloc() to perform the dynamic
allocation of block from the heap. The C
functions malloc() and free() deal
with uninitialised memory. The default
implementation of ::new & ::delete in

many native C++ compilers uses malloc()
and free(), the C primitive functions. (And
if you think hard about it the C++ compiler
developer wants to remain compatible with C.
Nevertheless mixing malloc and new in an
ordinary C++ application is still very poor
style.) On the other hand your compiler may
call another internal function. See notes at the
end of the article for details.

The default new_handler() function in
the debuggable ::operator new()
throws an exception class bad_alloc. Here
we do not deviate from the C++ standard.
Other new exception classes augment the
standard to indicate more failed memory
conditions. [4]

The allocator stores a special unrecognised
byte `U' (which is equivalent to 0x55 in
hexadecimal) in the user part (the middle). If
you are in the middle of a debugging session
and happen to see a lot ‘U’ characters printed
out, when you are examining variables, then
you could be looking at uninitialised
memory! You could also choose another byte
value for your system if feel it would be more
appropriate. If you happen to know assembly
language and the machine code of your target
system, then one can go further and use a byte
sequence. The Editor suggests 0xCC, better
known as “Int 3” for Intel machines.
Void _deallocate_memory(
 const char *func_name,
 PrefixHeader *ptr)
{
 if (ptr == 0)
 {
#ifdef CHECK_DELETE_ZERO
 cerr << "(*DbgNew*) " << func_name
 << "() : corrupted nil pointer"
 << endl;
#endif
 return;
 }

 if (diagnose_memory(ptr)
 != MEMORY_OK)
 // If a failed diagnosis returned
 // then do not free pointer!
 return;

 // Unmark the memory.
 unmark_memory(ptr);

 free(ptr); // Release it
}

 Page 31

 Overload - Issue 25 - April 1998

The deallocator function rejects the input if
the input pointer is null and it does not
normally report this as an error otherwise the
function returns immediately. If the input
pointer is non-zero then the deallocator will
check the actual block to see if it is invalid.
The call to diagnose_memory()
performs this operation. If the memory block
is invalid, a diagnosis will be reported (and an
exception class object thrown). If the input
pointer is legitimate, it refers to previously
allocated block, then the memory is safe to
unmark and only then it is finally released by
calling free().

The check_memory() function does the hard
work of examining the memory block. The
function returns the memory status as the
enumeration type. In particular we:

Look to see if the memory has already been
released. If it was unmarked, then this is a
double-deletion error.

If our new operator did not allocate the
pointer then this is unrecognised pointer
error.

Check the prefix header for corruption, if it
does not conform then this is a lower bound
error.

Check if the suffix header is unmarked, if it
does not conform then this is a double-
deletion error. This check is done to complete
robustness, even though most of double-
deletions will be detected in case.

Check the suffix header for corruption, if it
does not conform then this is an upper bound
error.

If we got through all of the above checks,
then the memory block is certified in good
health!
static MemoryStatus check_memory(
 PrefixHeader * ptr
)
{
 // Check the memory by:
 register int j,k;

 for (j=0,k=0; j<ALIGNMENT_SIZE;++j)
 If (ptr->ch[j] ==
 free_prefix_string[j])

 ++k;
 if (k==ALIGNMENT_SIZE)
 return (MEMORY_ALREADY_FREED);

 if (ptr->magic_word !=
 PREFIX_MAGIC_ID)
 return (MEMORY_UNKNOWN);

 for (j=0; j<ALIGNMENT_SIZE; ++j)
 if (ptr->ch[j] !=
 prefix_string[j])
 return (MEMORY_LOWERBOUND);

 SuffixHeader *sptr =
 (SuffixHeader*)(((char*)ptr) +
 PREFIX_HEADER_SIZE + ptr->size);

 for (j=0,k=0; j<ALIGNMENT_SIZE;++j)
 if (sptr->ch[j] ==
 free_suffix_string[j])
 ++k;
 if (k==ALIGNMENT_SIZE)
 return (MEMORY_ALREADY_FREED);

 for (j=0; j<ALIGNMENT_SIZE; ++j)
 if (sptr->ch[j] !=
 sufix_string[j])
 return (MEMORY_UPPERBOUND);

 // Fine!
 return (MEMORY_OK);
}

This naturally leads us to the
diagnose_memory() routine, which places a
call to check_memory() to examine the
returning pointer to heap block. The diagnosis
function throws exceptions to correspond to
the test cases of the first article.
static MemoryStatus diagnose_memory(
PrefixHeader *ptr)
{
 // Diagnose memory and raise any
exceptions
 bool memory_error=false;
 MemoryStatus status =
 check_memory(ptr);
 switch (status) {
 case MEMORY_ALREADY_FREED:
 cerr << "(*DbgNew*) memory
already freed at ptr:"
 << (void*)(ptr+1) << endl;
 throw AlreadyFreed();
 break;

 case MEMORY_UNKNOWN:
 // Any unknown memory should
 // be reported as an error.
 cerr << "(*DbgNew*) unrecognised
memory at ptr:"
 << (void*)(ptr+1) << endl;
 throw UnknownMemory();
 break;

 case MEMORY_LOWERBOUND:
 cerr << "(*DbgNew*) lower
boundary corruption at ptr:"
 << (void*)(ptr+1) << endl;

 Page 32

 Overload - Issue 25 - April 1998

 throw LowerboundCorrupted();
 break;

 case MEMORY_UPPERBOUND:
 cerr << "(*DbgNew*) upper
boundary corruption at ptr:"
 << (void*)(ptr+1) << endl;
 throw UpperboundCorrupted();
 break;
 }
 return (status);
}

Lastly I will show the marking functions:-
static PrefixHeader *mark_memory(
 PrefixHeader *ptr, size_t size)
{
 // Mark the prefix
 ptr->size = size;
 register int j;
 for (j=0; j<ALIGNMENT_SIZE; ++j)
 ptr->ch[j] = prefix_string[j];

 // Mark the suffix
 SuffixHeader *sptr =
 (SuffixHeader*)(((char*)ptr)+
 PREFIX_HEADER_SIZE + size);
 for (j=0; j<ALIGNMENT_SIZE; ++j)
 sptr->ch[j] = suffix_string[j];
 return (ptr);
}

The mark_memory() function writes the
prefix and suffix identification strings in to
the memory block B. The
unmark_memory() function writes a
completely different string, the free memory
identification string, in memory once it has
been released by the program. This is for the
detecting double deletion.
static PrefixHeader *unmark_memory(
 PrefixHeader *ptr)
{
 // Unmark the prefix
 register int j;
 for (j=0; j<ALIGNMENT_SIZE; ++j)
 ptr->ch[j] = free_prefix_string[j];

 // Unmark the suffix
 SuffixHeader *sptr =
 (SuffixHeader*)(((char*)ptr) +
 PREFIX_HEADER_SIZE + ptr->size);
 for (j=0; j<ALIGNMENT_SIZE; ++j)
 sptr->ch[j]=

free_suffix_string[j];
 return (ptr);
}

We have learned that the global operator
new() and operator delete() can be
powerfully overridden so that they can be
used to debug memory allocation in C++. The

fact that we can provide aternative new and
delete functions is very important, because it
provides us with a hook to implement
garbage collection or some other method of
managing dynamic memory for efficiency
and productivity.

Caveats

All of the C++ compilers that I have used so
far (g++ 2.7.2 and Borland C++ 4.52) use
some form of the traditional C memory
allocation function such as malloc(). Your
mileage may indeed vary. If you have
difficulty your compiler’s manual may
provide the answer. New compiler
implementations are expected any day soon,
once the standard is clarified.

The memory block technique is useful when
combined with mix-in debuggable heap
space classes that are described by Mr. Scott
Meyers [7]. With C++ you need to know
what class of object type directly corresponds
a section of free space. The language does not
provide this feature directly. You have to
instrument your own base classes that
reference blocks of memory to a particular
object class. One idea is to use Run-Time
Type Information (RTTI), when faced with
the sight of raw memory, but it will only
work on virtual object class though.

The article delivered the technique that
enables us to solve case 1, 2, 3 and 4. We can
detect when a pointer to a block is being freed
again. We can detect the case when a pointer
to block if it is not recognised. We can detect
overrun and underwrites in dynamic memory.
Only the fifth case is left.

Peter Pilgrim
Peter.Pilgrim@xenonsoft.demon.co.uk

[1] "Debuggable New and Delete Preamble",
Overload 23, Peter A. Pilgrim

[2] "Dynamic Memory Integrity", ACCU/
CVu 8.5, Peter A. Pilgrim and "Dynamic
Memory Tracking", ACCU/ CVu 8.6, Peter
A. Pilgrim

 Page 33

 Overload - Issue 25 - April 1998

 Page 34

[3] "Advanced C++ Programming Styles and
Idioms": Ch 3.6, James O. Coplien, and Pub.
Addison Wesley

[4] "C++ Primer" : 2nd Ed : The `new'
operator pg. 144 -150, Stanley B. Lippman,
Pub. Addison Wesley

[5] Section 8: Adhere to convention when
writing new, "Effective C++" : Pub. by
Addison Wesley 1992, Scott Meyers

[6] "The C Programming Language", Brian
Kernighan & Denis Ritchie, published by
Prentice-Hall. Borrowed 2nd Edition (section

8.7 describes a useful implementation of
malloc()).

[7] Item 27: Requiring or prohibiting heap-
based objects, "More Effective C++" Pub. by
Addison Wesley 1997, Scott Meyers. (Have a
look at Scott’s HeapTracked class on page
154 and item 28 too).

 Overload - Issue 25 - April 1998

Beyond ACCU... C++ on the ‘net

Pure Software Engineering

The Experimental Software Engineering
Group at the University of Maryland is
investigating new engineering methodologies
and paradigms.

http://cs.umd.edu/projects/SoftEng/tame

The Software Engineering Institute at
Carnegie Mellon has a mission of developing
and deploying new approaches to software
developments. Their most notable
contribution in the past thirteen years has
been the Capability Maturity Model.

http://www.sei.cmu.edu/

With all this web browsing aside, try
“Journey of the Software Professional”
(ISBN 0-13-236613-4). It's not easy going but
it's very, very relevant. It’s part of the
excellent Prentice Hall Software Engineering
series:

http://www.prenhall.com

Other high quality publishers include
Addison Weseley, and Morgan Kaufman.

http://www.mkp.com/ and
http://www2.awl.com/cseng/

As always, a great starting point for all
research is Yahoo’s category lists:

http://www.yahoo.co.uk/Computers_and_Inte
rnet/Software/Institutes/

Applied Software Engineering

Lead by software project management guru
Tom DeMarco, The Atlantic Systems Guild
provides various consultancy services. The
seven principles are regular contributers to
IEEE Software and JOOP. Their site contains
an excellent selection of articles and links to
related sites.

http://www.atlsysguild.com/

Key software engineering checklists,
published articles and extracts from Steve
McDonnell's books “Code Complete” (ISBN
1-55615-484-4), “Rapid Development” (ISBN
1-55615-900-5) are available from the
author’s web site.

http://www.construx.com/stevemcc

Implementation resources

The Microsoft Development Network is an
excellent source of articles and references for
Windows developers. It can be accessed on-
line freely, in return for filling in online
information forms.

http://www.microsoft.com/msdn

The Linux Documentation Project continues
its Herculean effort at.

http://sunsite.unc.edu/mdw/linux.html

Novell provide developer support services for
their Network Operating System platform and
various services.

http://developer.novell.com/cgi-bin/devnet

And, of course purely in the interests of
balance, Netscape provide extensive SDK
documentation for their server platforms on
the DevEdge Online web site.

http://developer.netscape.com/index_home.ht
ml

The Mozilla Organisation is acting as a focal
point for the source code release of the now
public domain free Netscape browser.

http://www.mozilla.org/

 Page 35

http://cs.umd.edu/projects/SoftEng/tame
http://www.sei.cmu.edu/
http://www.prenhall.com/
http://www.mkp.com/
http://www2.awl.com/cseng/
http://www.yahoo.co.uk/Computers_and_Internet/Software/Institutes/
http://www.yahoo.co.uk/Computers_and_Internet/Software/Institutes/
http://www.atlsysguild.com/
http://www.construx.com/stevemcc
http://www.microsoft.com/msdn
http://sunsite.unc.edu/mdw/linux.html
http://developer.novell.com/cgi-bin/devnet
http://developer.netscape.com/index_home.html
http://developer.netscape.com/index_home.html

 Overload - Issue 25 - April 1998

UseNet

There are a number of relevant and useful
UseNet news groups. The unmoderated tend
to receive way too many messages, most of
which tend to be noise. But, this is the
heritage of the net…

Testing. comp.software.testing.

Configuration
management

comp.software.config-
mgt

Software
Engineering.

comp.lang.software-eng

Group FAQ’s available from:

http://www.lib.ox.ac.uk/internet/news/faq/by_
group.index.html.

As ever, topic and site suggestions to Ian
Bruntlett, ibruntlett@libris.co.uk

Credits

Editor
John Merrells

merrells@netscape.com

Einar Nilsen-Nygaard
65 Beechlands Drive

 Clarkston, GLASGOW, G76 7UX.
UK

P.O. Box 2336,

Sunnyvale, CA 94087-0336,
U.S.A.

Readers
Ray Hall

Ray@ashworth.demon.co.uk

Ian Bruntlett
ibruntlett@libris.co.uk

Einar Nilsen-Nygaard

EinarNN@atl.co.uk
einar@rhuagh.demon.co.uk

Production Editor
Alan Lenton

alan@ibgames.com

Advertising
John Washington

accuads@wash.demon.co.uk
Cartchers Farm, Carthouse Lane

Woking, Surrey, GU21 4XS

Membership and Subscription Enquiries
David Hodge

davidhodge@compuserve.com
31 Egerton Road

Bexhill-on-Sea, East Sussex. TN39 3HJ

Copyrights and Trademarks

Some articles and other contributions use terms which are either registered trademarks or claimed
as such. The use of such terms is intended neither to support nor disparage any trademark claim. On
request, we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of ACCU. An
author of an article or column (not a letter or review of software or book) may explicitly offer
single (first serial) publication rights and thereby retain all other rights. Except for licences granted

 Page 36

http://www.lib.ox.ac.uk/internet/news/faq/by_group.index.html
http://www.lib.ox.ac.uk/internet/news/faq/by_group.index.html

 Overload - Issue 25 - April 1998

to (1) Corporate Members to copy solely for internal distribution (2) members to copy source code
for use on their own computers, no material can be copied from Overload without written
permission of the copyright holder.

Copy deadline

All articles intended for inclusion in Overload 26 should be submitted to the editor, John Merrells <
merrells@netscape.com>, by May 5th.

 Page 37

	Contents
	Editorial
	Treats
	Web Pages
	Submissions
	Copy Deadline

	Software Development in C++
	Counted Body TechniquesBy Kevlin Henney
	And then there were none...
	Attached vs detached
	A requirements based approach
	Getting smart
	Public accountability
	Runtime mixin
	Getting smarter
	Conclusion

	counted_ptr<type>By Jon Jagger
	Introduction
	Naïve and broken
	The Basic Idea
	Belt and Braces
	Final Polish
	Errata
	References (also counted 1,2,3 :-)

	UML – Parameterised Classes (Templates) and UtilitiesBy Richard Blundell
	Introduction
	References

	The Draft International C++ Standard
	(Almost) No Casting VoteStandard’s ReportBy Francis Glassborow
	Finally

	Generalizing Overloading for C++2000By Bjarne Stroustrup
	Abstract
	Introduction
	Basic Whitespace Overloading
	Previous Work
	Overloading Separate Forms of Whitespace
	Overloading Missing Whitespace
	Composite Operators
	Availability
	Current and Future Work

	Whiteboard
	Irrational BehaviourBy Graham Jones
	Implementations & InterfacesBy The Harpist
	TINSTAAFL
	The Problem of Not Being Exact

	Debuggable new and deletePart TwoBy Peter Pilgrim
	Caveats

	Beyond ACCU... C++ on the ‘net
	Pure Software Engineering
	Applied Software Engineering
	Implementation resources
	UseNet
	Credits
	Copyrights and Trademarks
	Copy deadline

